
A BEGINNERS GUIDE TO COMPUTER TECHNOLOGY

/ W

==
>

COMPUTER
INTRO

BY MAGNAVOX

Contents

In The Beginning
The World of the Computer
Creepy Crawler
Creepy Crawler Version II
The Roll Mode Your Program
Trouble Shooter
Addition Program A
Addition Program B
Addition-Program C
One Digit Multiplication
One Digit Division
Area Problems Using
“Go to Subroutine” and “Return”
One Digit Addition Flash Card
Three Ways to Enter and
Output a Letter
Six Letter Guess
Message
Operating Mode Review
Glossary of Frequently Used
Computer Terms
Instruction Sets
Program Sheets

2.
11.
20.
28.
29.

30.- 35.
40.
46-

m 52.
62.

71.
74.

80.
87.
92.

100.
104.

this gatefold
will provide you

with an electronic
road map— please

keep it open as
you work with

your Odyssey2

computer

Key Codes

Decimal
Equivalents

Key Hex
Code

Decimal
Equivalents

Key Hex
CodeCodeCode

17 230 00 O00
0F1 01 P 1501
18 2402 Q2 02
13 1903 R3 03
19 2504 S4 04
14 2005 T5 05

2106 U 156 06
07 24 36V7 07

1108 W 178 08
22 3409 X9 09
2C 44A 32 Y20
21 32B 37 Z25

12C 35 Blank 0C23
10D 261A 0A

$ 11E 1812 0B
46F 27 Clear1B 2E
13G 28 ?1C 0D
39H 291D 27
16I 2216 10+

J 30 401E 28
K 31 411F X 29
L 14 420E 2A

43M 3826 2B
N 45 472D Enter 2F

Internal Flow

Control Unit

Accumulator

Program Counter

Subroutine Return
Address Register

Memory (ROM)
Instructions and

Constants
Symbol/Sound

Generator
Keyboard

TV Screen

Keyboard

Computer Intro is not for everyone—but
if you’re up for a rewarding mental chal-
lenge, here is a fascinating entry point into
a complex and highly technical subject.

The cartridge turns your Odyssey2 into
a very special kind of computer. It won’t
balance your checkbook or do your income
tax or plot the course of a spaceship to Mars.

But it will give you some idea of howthose
computers do their work. You will begin to
understand how a computer “thinks” and
even begin to think like a computer “thinks’.’

The initial orientation and explanation
are deliberately couched in the most sim-
plistic of terms. They don’t assume any-
thing more on your part than a working
knowledge of basic arithmetic.

After a brief explanation of how compu-
ters work and what they are made of —you
will start getting “hands on” experience and
will learn by doing.

You will learn how to enter a program—
the first step in learning how to actually
write your own.

The gatefolds in the front and back of the
manual provide you with electronic road
maps. Keep these references in front of you
and you will clearly understand what’s going
on and how computers really compute.

1

In The Beginning

In the beginning, there were ten fingers—
then a prehistoric Einstein discovered his
toes and man could count up to twenty.

The oldest computing device we know of
is the abacus. It was first used in China in
the sixth century B.C.

The very first digital computer was de-
signed by Charles Babbage in the 1830’s.
It was more than a calculator. Babbage de-
signed it to be programmable, and it would
have been able to perform any arithmetic
or logic calculation.

It was designed to use punched cards for
entering data and instructing the machine
with mathematical commands.

Chinese Abacus

2

There were two problems.
Problem one. Babbage’s elaborate draw-

ings called for a building the size of a Dick-
ensian shoe factory to house his “analytical
engine’.’

Problem two. Babbage died before the
machine could be built.

The first practical programmable com-
puter was built in a basement at Harvard
University during World War II by IBM. It
weighed 35 tons!

This machine used an exotic combina-
tion of electronic, electrical and mechanical
gear to do its arithmetic. The instruction
program was stored on a punched paper
tape that unreeled automatically. Numbers
were entered into the machine on a panel
covered with 1,440 dials!

The first all-electronic computer was built
at the University of Pennsylvania shortly
after the warended. ENIAC (Electronic Nu-
merical Integrator and Computer) was1,000
times faster than its predecessor.

But it filled a room 30 feet wide and 50
feet long. Its 18,000 vacuum tubes were
connected by about a half-million solder-
ing points.

Today, everything that ENIAC could do
and far more is performed by a device
slightly smaller in size.

It is less than one quarter of an inch
square—and can make more than one mil-
lion electronic decisions every second. It is
called a semiconductor. It is possible for
one semiconductor in one of its newest

4

Detail section of the Babbage computer

5

forms—the microprocessor—to account
for more than 310 trillion separate functions.

And this is only the beginning!
If computer technology continues to de-

velop at its present rate, one of these chips
will be able to store about a quarter-million
bits (thesmallest unit of computer informa-
tion) in its memory within a few years.

Ten years from this point, there will be
chips capable of remembering a million
bits of information.

By 1990, the number of logic or decision-
making computer circuits on these one
quarter inch chips are expected to number
a quarter of a million.

Today’s large computers, selling in the
one million dollar range and as big as sev-
eral filing cabinets, contain only about
10,000 logic circuits and a main memory
capacity of a few million bits.

6

7

As microprocessor technology pro-
gresses, computers may be developed that
understand human speech.

It is even possible they can be taught to
read handwriting!

The microprocessor in your Odyssey2

is infinitely more sophisticated than the
mathematical marvels that were the state
of the art in the forties and fifties.

The technology of the microprocessor
is unquestionably going to revolutionize
the way the world works—and the way
you’ll live. A computer will control your car’s
automatic transmission and fuel injection
system.

A computer will monitor fire and burglar
alarm systems in your home.

The lights in your home will be compu-
terized. So will the locks on the doors and
windows.

8

A computer will even water the lawn.
A computer will do your shopping from

the house—and pay your bills without you
writing checks.

Computers will simulate three dimen-
sional space for architects to help them
mentally walk around their houses before
they’re built.

Computers will alert doctors to patient
problems that would be imperceptible un-
der today’s circumstances.

Computers will help composers heartheir
music as they’re writing it—even if it’s too
complicated for them to play.

Businessmen can have electronic simu-
lations of their companies in their attache
cases.

We are really still just at the very begin-
ning of the computer age. You have picked
a very good time to get involved!

9

The World of the Computer
Is Strange and Wondrous

Computers have already carried man to the
moon—to Mars—and far beyond.

They lie at the heart of fearsome weapons
systems.

They fly planes—monitor automobile
engines—run factories—and even trans-
late languages.

All of these with the brain power of a good
screwdriver.

Congratulations! You have just completed
your first lesson.

You are much smarter than any computer
at the present state of the art !

For all of its awesome capabilities, the
computer is nothing more than a rather
simple-minded tool.

But once you learn how to use it, you’ll
have more power at your command than
Julius Caesar ever dreamed of.

A computer has few basic talents.
It can add—and it can move numbers

around.
A computer never forgets—and compu-

ters don’t make mistakes. (If a computer
churns out misinformation, there’s a mis-
take in the program. Computers are utterly
faithful in following instructions.)

Big deal. Computers can’t multiply, di-
vide, or even subtract the way you do. But
what a computer does do, it accomplishes
with absolutely astonishing speed. 11

Your Odyssey2 can make over 100,000
electronic decisions every second—and
there are computers around that are more
than ten times faster than that!

To multiply, Odyssey2 simply adds num-
bers together at an incredible speed. To
subtract, it moves numbers around in a
special way so that adding them together
will give the correct answer. This sounds
like doing it the long way—but when you’re
that fast at addition, the juggling act be-
comes worthwhile.

It’s not all that hard to talk with a compu-
ter. It only understands two words. Yes—
and no. Yes—means that an electrical pulse
is tickling the computer’s sensitivities.
No—means that no electrical pulse is going
through.

The symbol for “yes” in computer lan-
guage is 1.

The symbol for “no” is 0.
Once you have memorized 0 and 1, you

have memorized the entire alphabet of the
only language computers speak in any
country of the world.

This is called a binary system because
there are only two symbols involved.

It’s sort of a code. Here’s the key.

Binary Numbers and Their Decimal Equivalents.

1=0001
2=0010
3=0011
4=0100

5=0101
6=0110
7=0111
8=1000

9=1001
10=1010
11=1011
12=1100

13=1101
14=1110
15=1111
16=0001 0000

12

Letters of the Alphabet and Their Binary Code
Equivalents.
Keyboard
Letter Binary Decimal Hexidecimal

0010 0000
0010 0101
0010 0011
0001 1010
0001 0010
0001 1011
0001 1100
0001 1101
0001 0110
0001 1110
0001 1111
0000 1110
0010 0110
0010 1101
0001 0111
0000 1111
0001 1000
0001 0011
0001 1001
0001 0100
0001 0101
0010 0100
0001 0001
0010 0010
0010 1100
0010 0001

32 20A
25B 37

C 35 23
26 1AD
18 12E
27 1BF

1CG 28
H 29 1D

16I 22
30 1EJ

K 31 1F
L 14 0E
M 38 26
N 2D45
O 23 17
P 15 0F
Q 1824
R 19 13
S 25 19
T 20 14

21U 15
V 36 24
W 17 11

22X 34
2C44Y

Z 32 21

Working with endless daisy chains of 0’s
and 1’s would be more than tedious for the
human brain—but the computer is really
good at it.

13

The inside of acomputer is mainly a series
of little electronic gates. 0—the absence of
an electrical pulse—leaves the gate open.
1—the presence of an electrical pulse-
closes the gate. And remember—the elec-
tronic gates in your Odyssey2 computerare
opening and closing at the rate of 100,000
times every second.

You will enter programs in your Odyssey2

through either the hexidecimal or assem-
bler language (these will be explained later).
The Odyssey2 will then change the data and
instruction sets entered into binary language
(Ts and 0’s) and store that information in
the Memory and in the registers.

The actual computing is done by the
computer’s Central Processing Unit (CPU).
The CPU in your Odyssey2 is composed of
the Accumulator (a working register which
stores data temporarily); the Program
Counter (a working register which locates
and identifies the instruction sets and keeps
them in order); the Registers (in which data,
implemented by the programmer, is stored);
the Sub-Routine Return Register (which is
used with a certain instruction set); the
Arithmetic Logic Unit (ALU); and the Con-
trol Unit.

The Control Unit directs the flood of elec-
tronic traffic traveling through the compu-
ter and controls the data flow between the
different components of the computer. For
example, it regulates the flow of informa-
tion between the Memory and Arithmetic
Logic sections and also orders processed

14

data to move from the Memory to the Out-
put terminal. The Output terminal of your
Odyssey2 computer is the screen of your
television set.

The Arithmetic Logic Unit is where the
computer teaches numbers to tap dance.
Its nickname is “number cruncher.” It acts
on the binary data fed into the computer’s
memory and registers—and then changes
them according to the programmed instruc-
tions.

Now, you’re ready to learn by doing.
You’re going to enter a program into your
computer. Open the fold-out at the front of
the book and you’ll see what happens to
everything along the way.

Important point. The neat thing about
computers is that they will always follow
your instructions with unflagging good faith.
The dumb thing about computers is that
they will only do what you have instructed
them to do.

It’s very important to make sure that you
enter every step and do it right. If you make
an error, the computer is going to make an
error.

Be sure that the power to your Odyssey2

console is turned off . Insert the COMPU-
TER INTRO cartridge into the console. Be
sure the label side is facing the alpha-
numeric keyboard. Now, turn on the power.

You’re going to be talking with your
Odyssey2 computer through the keyboard.
It will talk back to you over your television
screen.

15

Let’s take a brief trip around the keyboard.
It has forty-eight keys. Each key has been
encoded in the computer languages we’re
going to be using. You’ll find this code on
the gatefold at the front of the book.

The keyboard also contains some sur-
prises—four games that have been pre-
programmed in the cartridge.

Press 2 on the alpha-numeric keyboard.
A FLASH CARD addition game will appear
on your television set. An unsolved addi-
tion problem flashes on your screen. You
enter the solution through the keyboard. If
the answer is less than10, preface thenum-
ber with a 0. (Important ! Always use the
numeral 0 at the top of the keyboard when
entering a 0.) If you give a wrong answer,
an angry NO will appear on the screen. If
you give a correct answer, it will appear in
its proper position. To bring another prob-
lem to thescreen, summon it from thecom-
puter by pressing any key.

Adding numbers is no big deal until you
16

see how many addition problems you can
solve in one minute. If you keep trying to
beat your own record or another player,
you can’t help but sharpen your skills.

Press RESET, then press 3 on the alpha-
numeric keyboard and you’re into COM-
PUTER TELEPATHY! It’s a high-low game.
The computer secretly chooses a number
between 0Wand 99. The secret number won’t
appear on the screen—but a question mark
will. You make a guess at the correct num-
ber and enter it into the computer. Your
guess will appear on the screen. It will be
followed by an H if it is higher than the
computer’s secret number—or an L if it is
lower. If you guess correctly, the number
will be followed by an X. Play against an
opponent and see who can guess the com-
puter’s secret number in the fewest number
of guesses.

Now, press RESET, then press 4 on the
alpha-numeric keyboard. BETWEEN THE
SHEETS appears on the screen. You’ll see
three sets of numbers. Example: 03 07 00.

The first two numbersare the sheets. The
computer has thought of another number
which it is keeping to itself. The last num-
ber is your score. If you think the computer’s
secret number is between 03 and 07, press
YES on the alpha-numeric keyboard. If you
don’t think it falls between 3 and 7, press
NO. If you are correct, you score a point
and the number will appear between the
3 and 7. If you are wrong, the computer re-
wards you with a couple of BEEPS right in

17

the ear and your score remains the same.
Press RESET, then press 1 and a series of

blocks appears on the screen. The blocks
flash in random order and are accompanied
by a buzzing sound. We call this spooky ef-
fect “THE CREEPY CRAWLER” You can
call it anything you want.

We can re-program The Creepy Crawler
to display other symbols on the screen.
There is a large selection of graphics in the
memory of your Odyssey.2 You’ll find the
complete collection in the fold-out at the
back of the book.

The Creepy Crawler program is quite
short and represents a good starting point.
We’re going to follow this and succeeding
programs with a sort of road map so you
can see where your input goes and what
the various parts of the computer do with it.

There are two ways youcan program your
computer. You can speak HEXIDECIMAL
code (machine language). An instruction
would look like this: 60.

Your computer takes 60 and converts it
into its binary equivalent: 0110 0000. Notice
that this binary translation has eight digits.
These are called BITS. Bits are handled by
the computerin groups of eight. Onegroup
is called a BYTE. A byte is the smallest piece
of information a computer can work with.

In Odyssey2 Hexidecimal language, 60
means “Load a value into Register 0’.’ (A
register is a place where a computer stores
information. There are sixteen registers in
your Odyssey.2 Each register has room for

18

one byte of information.)
The second computer language your

Odyssey2 understands is called ASSEM-
BLER. Assembler uses alpha-numeric sym-
bols to input binary code instructions. An
instruction in Assembler is more phonetic
than Hex—but it is also longer.

Example: LDV.0.38 means—Load a value
into Register 0—and that value is 38. (Im-
portant: Be sure to enter the periods in the
assembler instructions or the computer will
not know what you’re talking about.)

In the back of the book, you’ll find a com-
plete chart of Instruction Sets for your
Odyssey.2

INSTRUCTION SETS are the codes that
tell your computer what you want it to do
with the data you’re going to give it.

Also Important: “0” is the equivalent of
zero in the numeric section of your key-
board. “O” is the letter of the alphabet.

Now, open the gatefold at the back of the
book. You’ll find a flow chart that tells you
how to get into the various operating modes
of your Odyssey.2 These modes are for dis-
playing data in the registers, entering and
executing a program, rolling through a pro-
gram to check data and much more.

Leave the front and back gatefolds open.
You’ll have your reference material right in
front of you.

We are now ready to re-program the fear-
some Creepy Crawler. First, we’ll enter in
Hex—and then we’ll do a variation in As-
sembler.

19

Creepy Crawler
Press the POWER BUTTONOFFandONto clear
the computer.

Press RESET “Command” appears on your
screen. Your computer is in the COMMAND
mode and ready to accept instructions. It knows
you want it to do something but doesn’t yet know
what.

Press P “Program” appears on the screen. “Aha’/
thinks the computer. “Somebody wants to enter
a program! I wonder what language this person
will speak!”

Press M “Hex Input” appears on the screen. The
computer now knows you will be communicat-
ing in HEX. You’re going to be using the Hexi-
decimal Operational Code (OP CODE).

Press I Step 00 appears on the screen and the
computer is ready and waiting to accept data.

Press 60 This is Op code for Load Register 0.
Register 0 is one of sixteen registers in your
Odyssey2 that make up part of its Random Ac-
cess Memory (RAM). Each register is a small
memory device that provides temporary stor-
age for data and instructions which will even-
tually be needed by the ARITHMETIC LOGIC
UNIT (ALU)—the place where all simple rea-
soning and arithmetic operations are performed.
Look at the registers in the computer as sixteen
in and out boxes on a desk that is shared by both
you and the Arithmetic Logic Unit.

20

Press ENTER Program Step 01 appears on the
screen. Register 0has now been activated to ac-
cept your entry upon execution of the program.
(The program steps you enter into the computer
do not actually become functional until you
press E [EXECUTE] at the completion of the
program.)

Press 3A You have just selected an electronic
figure from your computer’s gallery of electronic
art and symbols, which are stored in the symbol/
sound generator. You’ll find the entire gallery
in the fold-out at the back of the book. We’ve
selected the little man as an example, but you
can actually use any of the figures or symbols
for this program. They have been permanently
stored in your computer.

There are two parts to the memory unit in your
computer. The ROM (Read Only Memory) con-
tains the instruction sets and constants to be
used in programming. (The constants may be
repetitive numbers needed for mathematical
computation by the ALU—Arithmetic Logic Unit,
or they may be letters, numbers, or symbols
which you have entered into the Odyssey2 in a
program which will remain the same throughout
the program. See the program “Message’.’) The
other part of the computer’s memory is called
RAM (RANDOM ACCESS MEMORY). This
memory component is like a blackboard. Pro-
grams, instruction sets and constants can be en-
tered and later erased so that new data can be
entered. You’re writing this program on the RAM
component of the microprocessor in your
Odyssey.2

Press ENTER Program step 02 appears on the
screen. The little man will be loaded into Regis-
ter 0.

21

Press 61 This is Op Code for LOAD REGISTER
1. It tells your computer you want to give input
to that data storage unit.

Press ENTER Program step 03 appears on the
screen—and the door to Register 1 will open to
receive data.

Press 0C This is Op Code for a blank like the
space between words in a sentence.03
Press ENTER Program step 04appears on your
screen. The blank will be loaded into Register1.

O4 Press 6B This is Op Code for positioning. You
are opening the door to Register B and telling it
you want it to display the little man at a certain
place on the screen upon execution of the pro-
gram. You’ll let it know where.

Press ENTER Program step 05 appears. The
door to Register B will open.

Press 00 This entry tells the computer you will
want it to display the little man at the furthest
left position on the screen.

Press ENTER Program step 06 appears on your
screen. The positioning information will be
loaded into Register B.

22

Register B is the register that positions symbols
or characters on the screen. It has been given
eleven postions. 00 is the furthest left. 0A is the
furthest right. When Register B outputs on the
screen, it automatically increments or advances
by one. If we output a symbol in 00 (position
one), the symbol will appear in the first position
and Register B will then advance automatically
to position 2 (01). If Register B outputs in the
last position (0A), it automatically resets itself
back to the first position (00) on the next step.
Whatever data was in that first position will be
replaced by the new input.

Press C0 This is the Op Code that tells thecom-
puter you are going to want to bring that little
man to the screen. You have given him a way to
get out of Register B.

06
Press ENTER Program Step 07 appears on the
screen.

Press C1 This is Op Code for telling the com-
puter you want to bring that blank in Register 1
to the screen. 07
Press ENTER Program step 08 appears on your
screen to tell you everything is going along
smoothly.

08Press 05 It’s sound effects time. This is an Op
Codethat tellsthecomputer youwillwant tohear
a one second buzz.

Press ENTER Program step 09 appears.
23

Press 08 This Op Code tells the computer you
want it to come with an unlimited sequence of
random numbers. The computers that encipher
and decipher secret messages for governments
do this everyday. In the old days, crypt keys re-
mained constant and could be broken easily.
Today, they change constantly and at random.
Today, it takes one computer to break another’s
cipher.

Press ENTER The random number instructions
are entered into your computer. Program step
10 appears on the screen.

Press BB This is Op Code for UNPACK Regis-
ter B.This is the Register we use to position our
little man on the screen.This unpacking instruc-
tion takes therandom twodigit number selected
by the Accumulator and places one digit in
Register B (we are unpacking Register B, thus
the Op Code BB) and the other digit in the
Register immediately following B, which is Regis-
ter C. The digit in Register Cis ignored. Another
example of unpacking—If we had unpacked
Register 0, the Op Code would have been B0,
and one digit of the randomnumber wouldhave
been placed in Register 0 and the second digit
in Register 1.

To look at it another way, think of the Accumu-
lator as a suitcase and the registers as a tall
dresser with 16 drawers. You unpack two items
from your suitcase and put the first away in a
drawer. The second item will automatically go
to the drawer just below it.

24

At the end of the Creepy Crawler program, a
variation is written explaining how to use the
second digit of the random number which was
loaded into Register C, along with numerous
figures to execute a random display of figures
on the screen.

Through this unpacking instruction, the posi-
tioning Register (Register B) is loaded from the
Accumulator with a random number. It is this
instruction which will cause our little man to
travel to unpredictable places on the screen.
(The Accumulator is a small memory device in
the CPU that provides temporary storage for the
Arithmetic Logic Unit. It can store the result of
an ALU operation or serve as anoperationsource
[OPERAND] for the ALU.)

Press ENTER The unpacking instruction is en-
tered and program step 11 appears on your
screen.

Press12 This Op Code tells yourcomputer you’re
going to want it to return to a previously pro-
grammed step.

Press ENTER Program step 12 appears on the
screen and the computer wonders which pro-
gram steps you wish repeated.

Press 06 You have just told the computer you
want it to go through themotionsandalwaysre-
turn to program step 06. This was the place you
wanted the little man positioned on the screen

25

which was subsequently combined with a ran-
dom number to change the positioning on the
screen. In effect, you have now “looped” part
of your program. It will do its thing endlessly
with endless variations.

Press ENTER The computer salutes and will
do as you ordered. Program step 13 appears.

Press RESET The program is stored and you
are back in the COMMAND mode. “Command”
appears on your screen.

Press E You have instructed the computer to
execute your instructions. The fearsome Creepy
Crawler appears on your screen. The little man
or whatever symbol you have chosen will flash
and buzz in different positions on the screen.

Forever.
Or, until you turn it off.
Or, change the program.
Whichever comes first.

Important! The power switch on your console
is your program eraser. Turn it off and the pro-
gram is cleared from the unit automatically. Tbrn
it on—and you’re ready to enter a new program.

Now that you’ve entered Creepy Crawler in HEX,
try entering this variation in ASSEMBLER lan-
guage. We will call this program Creepy Crawler
with an All-Star Cast of Thousands.

26

First, turn the power off and on to erase any pre-
vious programming. Now, check the fold-out Op-
erational Row Chart to see how to get into the
Assembler Input Mode.
Press RESET
Press P
Press A
Press I

You are now in the Assembler Mode at program
step 00 and ready to go. One thing. Be sure to
enter the periods as well as the letters and num-
bers.
Press L
Press D
Press V
Press .
Press 2
Press .
Press 1
Press 3
Press ENTER

We are now at Program step 02. Continue enter-
ing in Assembler until you get to Program step
13. At this step you will begin entering a variety
of symbols in HEX. There is no Assembler equiv-
alent for them—so after Program step12,switch
over to the HEX Input Mode. Check the Opera-
tional Flow Chart and then—
Press CLEAR
Press ROLL
Press CLEAR
Press M
Press I

After you finish entering the program, press RE-
SET to store the program—then press E (EXE-
CUTE) and watch what happens!

27

Creepy Crawler Version II

Hex Assembler
Step Code Code Byte Remarks

00 62 13 LDV.2.13 2 Load Reg. 2 with 13
02 08 RND 1 Accum. selects a random number
03 BB UNP.B 1 Unpack the random number into Reg. B and C
04 9C LDA.C Load the Accum. from Reg. C1
05 E2 ADD.2 Add the contents of Reg. 2 to the Accum.1
06 AC STO.C Store the contents of the Accum. in Reg. C1
07 09 MOV Load Accum. from a Program step1

Output from Accum. to screen08 0B OTA 1
One second buzzSIG09 05 1
No operation (used as pause)10 00 NOP 1
Instructs Odyssey2 to go to Program step 02
and repeat program

11 12 02 GTO.02 2

Must enter Hex Mode (see page 27)13 32 1
14 33 1
15 3A 1
16 34 1

Hex codes for various symbols. These symbols17 35 1
with their Hex Code equivalents are shown at18 37 1
the front of the book.19 3D 1

20 3E 1
21 36 1
22 3C 1

28

The Roll Mode—Your Program
Trouble Shooter

The Roll Mode is for checking a program step to
be sure it contains the correct data. It is also for
making a change in a program step without hav-
ing to erase and re-enter an entire program.

To enter the Roll Mode, press R if you are in
either the Assembler or HEX input modes. If you
are in the EXECUTION mode, press RESET,
then P, then M (HEX) or A (ASSEMBLER) —and
then press R.

Then, press U to display the program steps
upward (00-99) —or press D to display the pro-
gram steps downward (99-00). The Roll Mode
will always display its information in HEX—even
if you have been entering in Assembler.

If everything checks out, roll to the last pro-
gram step entered and press CLEAR to re-enter
the Assembler or HEX input mode.

If you wish to make a change, press CLEAR
at the program step you wish to change. The
data will be cleared.

Enter M for HEX or A for Assembler, depend-
ing on the code you have been using.

Press I—the program step number you wish
to change will appear on the screen.

Enter the new data.
Press RESET You will be back in the COM-

MAND Mode and are ready to go on with the
program.

The following series of programs will be pre-
sented with a running commentary that will tell
you exactly where the data is going and what is
happening to it. These programs are written in
HEX code. At the end of each program, you’ll
find a summary written in HEX as well as Assem-
bler, so you can enter each program in either
language.

29

Addition-Program A

This program will add two one digit numbers
and display the total. Press the POWER BUT-
TON off and on to clear the computer.

Press RESET “Command” appears on your
screen. Your computer is ready to accept in-
struction.

Press P “Program” appears on the screen.

Press M “Hex Input” appears on the screen.
You have told the computer you will be using
the Hexidecimal Operational Code (Op Code).

Press I Step 00 appears on the screen. The com-
puter is ready to accept data.

00 Press 70 Press ENTER You have told the com-
puter you are going to input the first number in-
to Register 0.

01 Press 04 Press ENTER You instruct the com-
puter to feed the second number of the addition
problems into the Accumulator. Remember, the
Accumulator provides temporary storage for
the ALU where the numbers are going to be
crunched.

30

Press E0 Press ENTER This instructs the com-
puter to add the contents of Register 0 to the
contents of the Accumulator and to store the
sum in the Accumulator.

02
Press B1 Press ENTER This Op Code is an un-
packing instruction. It tells the computer to un-
pack the sum which has been stored in the
Accumulator into Register 1 and Register 2.

03
04Press 6B Press ENTER This starts a position-

ing instruction.

05Press 00 Press ENTER This Op Code tells the
computer to display subsequent information at
the 00 position on your TV screen.

Press C1 Press ENTER You tell the computer
you will want to output the information in Regis-
ter 1 (first digit sum). 06
Press C2 Press ENTER You also want to out-
put the data in Register 2 (Second digit sum). 07

08Press 12 Press ENTER This tells the computer
you want it always to return to a certain step and
repeat the program from that point.

09Press 00 Press ENTER 00 is the step you want
the computer to return to and repeat. Now, the
computer will perform a continuous series of
addition problems.

31

The program is now completed.

Press RESET The program is now stored in the
computer’s memory and you are back in the
COMMAND Mode.

Press E The computer executes your program.
A question mark appears on the screen. The
computer is asking for two 1 digit numbers to
add.

Enter the First Number. Press any digit from 0
through 9. You will hear a beep confirming en-
try. The number will not appear on the screen.
That instruction was not included in this pro-
gram.

Enter the Second Number. Press any digit 0
through 9 and the sum total of the two entered
numbers will immediately appear on the screen.

To enter a new problem, press any single digit
number. Then, press the other single digit num-
ber.

The previous sum will be replaced by the answer
of the new addition problem as soon as you have
entered the second number of the new problem.

Now, here is the addition problem you have just
entered expressed in both HEX and ASSEMBLER
codes. Note the following points.

32

Important: Remember to get into the proper
input mode for the language you are using.
Press PMI for HEX.
Press PAI for Assembler.

Very Important:Look at Program step 04.It is
a two Byte instruction. Remember, in Binary
each byte is composed of eight bits. 6B (HEX =
0110 1011 (BINARY). 00 (HEX) = 0000
NARY). Therefore, 6B 00 is a two byte instruc-
tion. If you are in theHEX mode,eachByte must
be entered separately.
Press 6B
Press ENTER
Press 00
Press ENTER

(Bl-

If you are in the Assembler mode, both Bytes
are fed into the computer with one entry.
Press L
Press D
Press V
Press .
Press B
Press .
Press 0
Press 0
Press ENTER

In either language, you will seeProgram step 06
on the screen after the data is entered. Now,
push the Power Button to erase any previous
data...choose one of the input codes...and
enter theprogram.Be sure topress ENTER after
each step.

33

Addition'Program A

Hex Assembler
Step Code Code Byte Remarks

00 70 INP.0 Input Reg. 0 with 1st number1
01 04 INA 1 Input Accum. with 2nd number
02 E0 ADD.0 1 Add Reg. 0 to Accum.
03 B1 UNP.1 Unpack Accum. into Reg. 1 and Reg. 21
04 6B 00 LDV.B.00 2 Set output position to 00
06 C1 0UT.1 1 Output Reg. 1, 1st digit sum
07 C2 OUT.2 Output Reg. 2, 2nd digit sum1
08 12 00 GTO.00 2 Go to step 00 and repeat

34

AdditiorvProgram B

This program will also add two one digit num-
bers. However, this time when you enter the
second number, the entire problem will appear
on the screen. (Example: 2+4=6). You will be en-
tering + and = signs in this program.

First, press the POWER BUTTON off and on to
clear the computer. Then-

Press RESET “Command” will appear on your
screen, and your computer is all ears.

Press P “Program” appears on your screen.

Press M “Hex Input” appears on your screen.
The computer knows you will be using Op
Code (Hexidecimal Operation Code).

Press I Step 00 appears on the screen. You are
ready to input data.

Press 70 Press ENTER You tell the computer
the first number will be entered into Register
0L 01 appears on your screen.

35

Press 04 Press ENTER You tell the computer
to accept the second number into the Accumu-
lator. 02 appears on the screen.01
Press 6 B Press ENTER This starts an output
position entry.02

03 Press 00 Press ENTER The output position is
set at 00 at the far left of the screen.

Press C0Press ENTER The output channel from
Register 0 will open for the first number of the
addition problem.04

05 Press 63 Press ENTER The input channel to
Register 3 will open.

Press 10 Press ENTER 10 will be loaded into
Register 3. 10 is Op Code for the (+) sign.06

07 Press C3 Press ENTER The output channel from
Register 3 will open so the (+) sign can be dis-
played on the screen.

Press 0B Press ENTER The output channel of
the Accumulator will open so that the second
number can be displayed on the screen.08

09 Press 63 Press ENTER The input channel to
Register 3 will open.

36

10Press 2B Press ENTER 2B will be loaded into
Register 3. 2B is Op Code for the (=) sign.

Press C3 Press ENTER The output channel from
Register 3 is opened so the (=) sign may be dis-
played on the screen. 11
Press E0Press ENTER This instruction adds the
contents of Register 0 to the contents of the
Accumulator and stores the result in the Accu-
mulator. Remember, Register 0 contained the
first number of the addition problem. The Ac-
cumulator held the second number.

12

13Press B1 Press ENTER This program step un-
packs the contents of the Accumulator storing
the first digit of the sum in Register 1 and the
second digit of the sum in Register 2.

Press C1Press ENTER The output channel from
Register 1 will open to let the first digit sum be
displayed on the screen. 14
Press C2 Press ENTER The output channel from
Register 2 will open to let the second digit sum
be displayed on the screen. 15

16Press 12 Press ENTER This begins an instruc-
tion to return to a previous step.

17Press 00 Press ENTER The computer is in-
structed to return to step 00 and be ready to

37

solve a new addition problem. The old problem
will not erase from the screen until both digits
of the new problem are entered.

Press RESET The program is now stored in the
computer.

Press E The computer is ready to execute the
program. A question mark appears on the screen
asking for input.

Press any single digit number. Nothing appears
on the screen.

Press a second single digit number. The entire
problem and the solution appear on the screen.
Both will remain there until two new digits are
entered.

38

Addition-Program B

Hex Assembler
Step Code Code Byte Remarks

INP.0 1 Input Reg. 0 with 1st number00 70
INA 1 Input Accum. with 2nd number01 04

02 6B 00 LDV.B.00 2 Set output position
04 C0 OUT.0 1 Output 1st number from Reg. 0
05 63 10 LDV.3.10 2 Load Reg. 3 with (+) sign
07 C3 OUT.3 1 Out Reg. 3, (/) + on screen
08 0B OTA 1 Output 2nd number
09 63 2B LDV.3.2B 2 Load Reg. 3 with (=) sign
11 C3 OUT.3 1 Output Reg. 3, (/) = on screen
12 E0 ADD.0 1 Add Reg. 0 to Accum.
13 B1 UNP.1 1 Unpack Accum. into Reg. 1 and Reg. 2
14 C1 OUT.1 1 Output Reg. 1, 1st digit sum
15 C2 OUT.2 1 Output Reg. 2, 2nd digit sum
16 12 00 GTO.00 2 Go to step 00 and repeat

39

Addition-Program C

After you enter this program aquestion mark on
the screen asks you to press in two one digit
numbers for the computer to add. The first num-
ber appears on the screen followed by (+) sign.
When you press the second number, it appears
on the screen followed by a (=) sign and the
answer. When the first digit of the next addition
problem is entered, the first problem will dis-
appear from the screen. To begin, turn off the
power to erase the previous program.

Press RESET You computer is in the “Com-
mand” Mode and ready to accept instructions.

Press P The computer enters the “Program”
Mode.

Press M “Hex Input” appears on the screen. The
computer is ready to accept instructions in Op
Code.

Press I Step 00 appears on the screen and the
computer is ready for the program.

Press 6B Press ENTER You are setting the out-
put position of Register B.

40

Press 00 Press ENTER That output position is
00 at the far left of the screen. 01
Press 70 Press ENTER You tell the computer
that the first number of the addition problem
will be stored in Register 0. 02
Press C0 Press ENTER This tells the computer
you will want it to output the contents of Regis-
ter 0. 03
Press 63 Press ENTER You are preparing Re-
gister 3 to accept data. 04

05Press 10 Press ENTER Register 3 will be loaded
with a 10—the code for a (+) sign. You will find
the complete code for all of the graphics stored
in your computer on the fold-out at the back of
the book.

Press C3 Press ENTER This will open the way
to output the (+) sign from Register 3. 06

07Press 04 Press ENTER This will open the Ac-
cumulator for future input.

08Press 0B Press ENTER The output channel of
the Accumulator is set to open.

09Press 63 Press ENTER You want to load a value
into Register 3.

41

Press 2B Press ENTER That value is 2B—the
code for the (=) sign.10

1 1 Press C3 Press ENTER This will open the way
to output the (=) sign from Register 3.

12 Press E0 Press ENTER The computer will then
add the contents of Register 0 to the Accumu-
lator. Register 0 has already been instructed to
accept the first number in the addition problem
(Step 02)—and the Accumulator has been In-
structed to accept the second number.

13 Press B1 Press ENTER This Op Code will un-
pack the contents of the Accumulator (which
contains the sum) into RegisterlandRegister 2.

14 Press C1 Press ENTER This will open the out-
put channel of Register 1.

15 Press C2 Press ENTER This will open the out-
put channel of Register 2.

16 Press 70 Press ENTER This input is a pause
operation. It tells the computer to leave the first
problem on the screen until another problem
is entered.

17 Press 6C Press ENTER Register C will be
opened for loading.

42

18Press 0B Press ENTER Register C will be loaded
with 0B—the Op Code for the decimal number
11, which is exactly the number of positions avail-
able on the screen.

19Press 67 Press ENTER Register 7 will be ready
for loading.

20Press 0C Press ENTER 0C is Op Code for blank
spaces as indicated in the computer graphics
section in the fold-out at the back of the book.
Register 7 will be loaded with blank spaces.The
computer will use these blank spaces to erase
the old problem on the screen when the first
digit of the new problem is entered.

Press 9C Press ENTER The Accumulator will be
loaded with the contents of Register C —the
decimal number 11. 2 1
Press 64 Press ENTER This will open Register
4 to accept data. 22

Z3Press 00 Press ENTER Register 4 will be loaded
with 00.

Press 02 Press ENTER The amount in the Ac-
cumulator (11—the number of positions on the
screen) will be decremented (subtracted) by
one each time this step is reached.

24
25Press C7 Press ENTER Register 1 will output its

blank spaces.
43

Press 24 Press ENTER This is a branch instruc-
tion—sort of a fork in the electronic road. The
computer is instructed to continue on to the next
program step if the number in the Accumulator
equals the number in Register 4 (00).

26

27 Press 24 Press ENTER The computer is instruc-
ted to return to step 24 if the number in Register
4 is not equal to the Accumulator. Step 24 will
decrement the contents of the Accumulator
(which originally was 11) by 1 each time until
the Accumulator is reset at 00to match Register
4. Program steps 16 through 27demonstrate how
a computer erases by outputting blank spaces
to the screen.

Press 6B Press ENTER We are resetting Regis-
ter B to return to its original output position once
the Accumulator is equal to Register 4.28
Press 00 Press ENTER The output position of
Register B is set at the extreme left position of
the screen.29
Press 12 Press ENTER This Op Code instructs
the computer to branch to another program step
when the amount in the Accumulator equals 000.30
Press 03 Press ENTER The step the computer
returns to is 03. Now, you are able to enter and
solve repeated addition problems.31
Press RESET The program is stored.

Press E The program is executed.See the begin-
ging of the program for use instructions.

44

AdditiorvProgram C

Hex Assembler
Step Code Code Byte Remarks

00 6B 00 LDV.B.00 2 Set output position to 00
02 70 INP.0 1 Input 1st number to Reg. 0
03 C0 OUT.0 1 Output Reg. 0
04 63 10 LDV.3.10 2 Load Reg, with (+) sign
06 C3 OUT.3 1 Output (+) sign from Reg. 3
07 04 INA 1 Input to Accum. (second number)
08 0B OTA 1 Output from Accum.
09 63 2B LDV.3.2B 2 Load Reg. 3 with (=) sign
11 C3 OUT.3
12 E0 ADD.0

1 Output (=) sign from Reg. 3
1 Add Reg. 0 to Accum.

UNR1 113 B1 Unpack Accum. to Reg. 1 and Reg. 2
14 C1 OUT.1 1 Output Reg. 1
15 C2 OUT.2 1 Output Reg. 2

INR0 116 70 This is used as a pause operation
17 6C 0B LDV.C.0B 2 Load Reg. C with Hex 0B (#11)
19 67 0C LDV.7.0C 2
21 9C LDA.C

Load Reg. 7 with blank spaces
Load Accum. from Reg. C1

22 64 00 LDV.4.00 2 Load Reg. 4 with 00
24 02 DEC 1 Subtract 1 from Accum.
25 C7 OUT.7
26 24 24 BNE.4.24 2

1 Output Reg. 7 (blank spaces)
Branch if Accum. does not = Reg. 4
Set output position to 0028 6B 00 LDV.B.00 2

30 12 03 GTO.03 2 Go to step 03 and repeat

45

2 One Digit Multiplication

After you enter this program, a question mark
will appear on the screen asking for input. The
first digit enteredis thenumber you wish to mul-
tiply (the multiplicand). It appears on the screen
with an (X) sign. The second digit entered is the
multiplier. The complete problem will now
appear on the screen along with the answer.
Odyssey2 solves multiplication problems through
an addition process. If the problem is 3 X 7, the
computer will arrive at the answer by adding
7+7+7. Program steps 00through 11 are instruc-
tions which allow the problem to be displayed
on the screen. The mathematical operational
sequence begins with step 12.

First, press the POWER BUTTON off and on to
erase the previous program.

Press RESET You are in the “Command” Mode.

Press P You enter the “Program” Mode.

Press M “Hex Input” appears on the screen. The
computer is ready for Op Code instructions.

Press I Step 00 appears on the screen and the
computer is ready for the program.

46

Press 6B Press ENTER The output position of
Register B is ready for setting. 00
Press 00 Press ENTER You set the output of
Register B for the far left of the screen. 01
Press 70 Press ENTER The multiplicand is di-
rected to be stored in Register 00. 02

03Press C0 Press ENTER Register 0 is given an
output channel.

04Press 66 Press ENTER The door will be opened
to Register 6.

05Press 29 Press ENTER An (X) sign will be en-
tered into Register 6.

06Press C6 Press ENTER Register 6 is given an
output channel.

07Press 71 Press ENTER The multiplier will be
stored into Register 1.

08Press C1 Press ENTER The multiplier is given
a way out of Register 1.

09Press 67 Press ENTER The door to Register 7
is instructed to open.

47

Press 2B Press ENTER 2B is Op Code for ().
The (=) sign will be loaded into Register 7.10

1 1 Press C7 Press ENTER This will provide an out-
put channel for Register 7.

12 Press 90 Press ENTER The Accumulator is in-
structed to be ready to accept data from Register
0i This is the Register that holds the number
you want to multiply. The Accumulator will be
loaded with the same value as the contents of
Register 0—however, Register 0 will continue
to retain its data.

Press E0 Press ENTER The computer is in-
structed to add the contents of the Accumula-
tor to Register 0L Remember, that Odyssey2mul-
tiplies by a series of addition steps. This is the
first addition step.

13

14 Press A2 Press ENTER The sum of the digits
from the Accumulator and Register 0 will be
stored in Register 2.

Press 91 Press ENTER The Accumulator will be
loaded from Register 1 which holds the multi-
plier. The Accumulator will now know the num-
ber of addition steps it must perform to arrive
at an answer.

15

16 Press 02 Press ENTER This step will decrement
the Accumulator which contains the multiplier
by1so that the computer can keep track of how
many addition steps have been made.

48

Press A1 Press ENTER The difference will be
stored in Register 1. 17

18Press 63 Press ENTER The door to Register 3
will open.

19Press 01 Press ENTER 01 will be stored in Reg-
ister 3. This will give the computer a reference
point which will halt the additionprocess. When
the Accumulator contains the contents of Reg-
ister 1 (the multiplier), it is compared to the con-
tents of Register 3 (which is 01). If the contents
in Register 1, which is now in the Accumulator,
and Register 3 coincide, the computer will stop
adding. If they are not equal, the computer will
loop back and continue the addition process.

Press 33 Press ENTER This starts a branch
operation. 20
Press 25 Press ENTER The computer is instruc-
ted to branch to step 25 if the contents of the
Accumulator and Register 3 are equal. In which
case, the answer will be unpacked and displayed
on the screen.

2 1

ZZPress 92 Press ENTER The Accumulator will be
loaded with the information in Register 2,
which contains the data fed in Program Step 14.

Z3Press 12 Press ENTER The computer is instruc-
ted to return to a previous step in the program
if the conditions in program step 19 have not
been met.

49

Press 13 Press ENTER The computer Is in-
structed to return to step 13 and once again add
the contents of Register 0 to the Accumulator.
(Register 0holds the multiplicand.)

24
25 Press 92 Press ENTER The Accumulator will be

loaded with the contents of Register 2 which
contains the sum of the addition operations. We
are almost at the end of the tunnel. This opera-
tion is performed when the contents of the Ac-
cumulator and Register 3 are equal.

Press B4 Press ENTER This is a two digit un-
packing operation, which has been explained
in Addition Program A.26

27 Press C4 Press ENTER An output channel for
Register 4.

Press C5 Press ENTER An output channel for
Register 5.28
Press 12 Press ENTER You instruct the com-
puter to return to a previous program step.29

30 Press 00 Press ENTER That step is 00. The
computer will now be ready to accept a new
multiplication problem.

Press RESET The program is stored.

Press E The program is executed.
50

One Digit Multiplication

Hex Assembler
Step Code Code Byte Remarks

00 6B 00 LDV.B.00 2 Set output position
02 70 INP.0 1 Multiplicand stored in Reg. 0
03 C0 OUT.0 1 Output multiplicand
04 66 29 LDV.6.29 2 Symbol (x) stored in Reg. 6
06 C6 OUT.6 Output Reg. 6;Reg. 6 = (x)1
07 71 INP.1 1 Multiplier stored in Reg. 1
08 C1 OUT.1 Output Multiplier1
09 67 2B LDV.7.2B 2 Symbol (=) stored in Reg. 7
11 C7 OUT.7 1 Output Reg. 7
12 90 LDA.0 1 Load Accum. from Reg. 0
13 E0 ADD.0 1 Add Accum. to Reg. 0
14 A2 STO.2 Store sum in Reg. 21

Load Accum. from Reg. 115 91 LDA.1 1
16 02 DEC Decrement Accum. by 11
17 A1 STO.1 Store difference in Reg.11
18 63 01 LDV.3.01 2 Load Reg. 3 with 01
20 33 25 BEQ.3.25 2 Go to step 25 if Accum. = Reg. 3

Load Accum. from Reg. 222 92 LDA.2 1
23 12 13 GTO.13 2 Go to step 13

Load Accum. from Reg. 2LDA.2 125 92
26 B4 UNP.4 1 Unpack two digits
27 C4 OUT.4 Output Reg. 41

Output Reg. 528 C5 OUT.5 1
29 12 00 GTO.00 2 Go to step 00 and repeat

51

2 One Digit Division

A question mark will appear on the screen. The
first number entered will be the dividend and it
will be followed by a () sign. The second num-
ber entered will be the divisor. It will appear on
the screen along with an (=) sign and the answer.
Your Odyssey2 computer accomplishes division
by a series of subtractions. Its the Odyssey2

multiplication process in reverse.

Note: There are two conditions in division that
must be provided. The first condition is when
the divisor can be divided into the dividend
equally. Example: 6 2 = 3. The second condi-
tion is when the divisor cannot be divided into
the dividend equally and there is a remainder.
Example: 9 2 = 4 + R. Your Odyssey2 has been
instructed to display (+R) if there is a remainder.
This program provides branching instructions
to satisfy both conditions.

To begin, turn the POWER BUTTON off and on
to erase any previous program.

Press RESET You are in the “Command” mode.

Press P You have entered the “Program” mode.

Press M “Hex Input” appears on the screen. The
computer is ready to accept instructions in Op
Code.

52

Press I Step 00 appears on the screen, and you
are ready to enter the program.

Press 63 Press ENTER The door to Register 3
will be opened. 00
Press 00 Press ENTER We call this “initializa-
tion”—a step to insure that Register 3 is set at
absolute zero value after each problem is solved.
Register 3 will contain the sum of the subtrac-
tion operations Odyssey2 will perform to find
the quotient.

01

Press 6B Press ENTER The door to Register B
will be opened. 0
Press 00 Press ENTER Register B will be posi-
tioned to output at the far left of the screen. 03

04Press 70 Press ENTER The number to be divided
(the dividend) will go into Register 0 the divi-
dend must always be larger than the divisor.

05Press C0 Press ENTER The output channel to
Register 0 is set to open.

Press 69 Press ENTER Register 9 will be
opened for input. 06

07Press 2A Press ENTER 2A is Op Code for (-).
The division sign will go into Register 9.

53

08 Press C9 Press ENTER The output channel of
Register 9 is set to open.

09 Press 71 Press ENTER The divisor will be
loaded into Register 1.

Press C1 Press ENTER The output channel of
Register 1 is instructed to open.10

1 1 Press 6A Press ENTER The door to Register A
will be opened.

12 Press 2B Press ENTER 2B is Op Code for ().
The equal sign will go into Register A.

13 Press CA Press ENTER The Register A output
channel is instructed to open.

14 Press 91 Press ENTER The Accumulator will
be loaded with the contents of Register 1 which
contains the divisor. We are going to use a sam-
ple problem so the explanation will be easier
(6 2=3). The Accumulator will be loaded with
the divisor (2).

15 Press D0 Press ENTER The contents of the Ac-
cumulator will be subtracted from the contents
of Register 0 which contains the dividend (6).

16 Press A0 Press ENTER The difference (4) be-
tween the dividend and the divisor (6-2=4) will
be stored in Register 0.

54

17Press 93 Press ENTER The Accumulator will be
loaded with the contents of Register 3. This is
the Register that was “initialized” at 00 so that
we could keep track of the number of times we
subtracted.

18Press 03 Press ENTER A 1 will then be added
to the Accumulator. This is called an increment.

19Press A3 Press ENTER The sum of the Accu-
mulator is then stored in Register 3. This Reg-
ister now contains 01.

20Press 90 Press ENTER The Accumulator will be
loaded with the contents of Register 0. Register
0 has been loaded with a value of 4, the differ-
ence between the dividend and the divisor. The
value was loaded into Register 0 in Program
step 16.

2 1Press 13 Press ENTER This will be the start of
a branch operation.

Z ZPress 40Press ENTER The computer will branch
to step 40if the Accumulator equals 0. Once the
Accumulator equals 0, the problem is finished
and Program step 40 will unpack the answer and
it will be displayed on the screen.

Z3Press 91 Press ENTER If the Accumulator does
not equal 0, it will go to this program step. The
Accumulator will be loaded with the contents of
Register 1 which contains the divisor (2).

55

Press 50 Press ENTER Another branch opera-
tion will be started.2 4
Press 28 Press ENTER The computer will be
instructed to branch to program step 28 if Reg-
ister 0 which contains the dividend (4) is less
than the Accumulator whichcontains thedivisor
(2) from Register 1.

25
Press 12 Press ENTER This tells the computer
to return to a previous step if Register 0 is not
less than the Accumulator.26
Press 15 Press ENTER This completes the re-
turn instructions. The computer is programmed
to return to step 15. This step begins the sub-
traction operations which will continue until
Register 0 is loaded into the Accumulator at
step 21 and, the Accumulator equals 0 in this
example. When this condition is met, Odyssey2

will loop to Program step 40.

27

Press 93 Press ENTER This is the step your
computer will branch to if a remainder is in-
cluded. The branching instructions were given
in steps 24 and 25. They programmed the com-
puter to branch to step 28 if Register 0 which
contains the dividend is less than the Accumu-
lator which at this point, contains the divisor.
We will use 9 2=4+R as our sample problem.
All program steps have been the same up to this
point. The computer has looped to step 15 sev-
eral times. Register 0 now contains 01 and the
Accumulator contains 02. This step will load
the Accumulator from Register 3 which con-
tains the number of times (2) has been sub-
tracted from (9) which is (4).

28

56

Press B4 Press ENTER This instruction will un-
pack the answer. 29

30Press C4 Press ENTER The first digit, stored in
Register 4, will be displayed on the screen.

Press C5 Press ENTER The second digit, stored
in Register 5, will be displayed on the screen. 31
Press 66 Press ENTER Register 6 will open. 32
Press 10 Press ENTER 10 will be loaded into
Register 6. 10 is the Op Code for (+). 33

34Press 67 Press ENTER Register 7 will be opened.

Press 13 Press ENTER 13 will be loaded into
Register 7. 13 is the Op Code for (R). 35

36Press C6 Press ENTER The output channel for
the (+) sign will be opened.

Press C7 Press ENTER The output channel for
(R) will open. 37
Press 12 Press ENTER The computer is in-
structed to return to a previous step. 38

39Press 00 Press ENTER The computer will return
to step 00 and be ready to solve a new problem.

57

Our program ends at this point if we have solved
a problem that contains a remainder. If not, as in
our first example (6- 2=3), we would have
jumped from Program step 21 to Program step
40.

Press 93 Press ENTER The Accumulator will be
loaded with the contents of Register 3. It will
contain the number of times the divisor has
been subtracted from the dividend. In step 21
the computer was programmed to branch to
this step when the contents of the Accumulator
equaled 0. We were using 6- 2 as our example
so at this point Register 3 contains (3) the
number of times (2) has been subtracted from
(6).

41 Press B4 Press ENTER This unpacking opera-
tion will convert the answer from binary into
decimal.

42 Press C4 Press ENTER The output channel of
Register 4 will be opened for the first digit.

43 Press C5 Press ENTER The output channel of
Register 5 will be opened for the second digit.

Press 66 Press ENTER Register 6 will open.44
45 Press 0C Press ENTER Register 6 will be loaded

with 0C which is Op Code for a blank space.

Press 67 Press ENTER Register 7 will open.46
58

Press 0C Press ENTER Register 7 will be loaded
with a blank space. Registers 6 and 7 have been
loaded with blanks so that (+R) will not be dis-
played on the screen when this branch of the
program is employed by the computer.

47
Press C6 Press ENTER The output channel from
Register 6 will open. 48
Press C7 Press ENTER The output channel from
Register 7 will open. 49

50Press 12 Press ENTER The computer is in-
structed to return to a previous step.

Press 00 Press ENTER The computer is in-
structed to return to step 00 and be ready to
solve another problem. 51
Press RESET The program is stored.

Press E The program is executed.

59

One Digit Division

Hex Assembler
Step Code Code Byte Remarks

00 63 00 LDV.3.00 2 Reg. 3 = 00 (initialization)
02 6B 00 LDV.B.00 2 Reg. B =00 (positioning)

Dividend stored in Reg. 004 70 INP.0 1
05 C0 OUT.0 1 Output Reg. 0
06 69 2A LDV.9.2A 2 Symbol (-) stored in Reg. 9
08 C9 OUT.9 1 Output Reg. 9
09 71 INP.1 1 Divisor stored in Reg.1

Output Reg.110 C1 OUT.1 1
11 6A 2B LDV.A.2B 2 Symbol (=) stored in Reg. A

Output Reg. A13 CA OUT.A 1
Load Accum. from Reg.11LDA.114 91
Sub. Accum. from Reg. 0115 D0 SUB.0
Store difference in Reg. 016 A0 STO.0 1
Load Accum. from Reg. 3LDA.3 117 93
Add 1 to the Accum.1INC18 03
Store sum in Reg. 3119 A3 STO.3
Load Accum. from Reg. 0LDA.0 120 90
Branch to step 40 if Accum. equals 021 13 40 BRZ.40 2
Load Accum. from Reg.1LDA.1 123 91
Branch to step 28 if Reg. 0
is less than Accum.

24 50 28 BLS.0.28 2

26 12 15 GTO.15 2 Go to step 15
Load Accum. from Reg. 31LDA.328 93
Unpack two digits129 B4 UNP.4
Output 1st digit which is stored
in Reg. 4

30 C4 OUT.4 1

Output 2nd digit which is stored
in Reg. 5

31 C5 OUT.5 1

Symbol (+) stored in Reg. 632 66 10 LDV.6.10 2
34 67 13 LDV.7.13 2 Symbol (R) stored in Reg. 7

60

Hex Assembler
Step Code Code Byte Remarks

36 C6 OUT.6 1 Output (+) sign
37 C7 OUT.7 1 Output (R)
38 12 00 GTO.00 2 Go to step 00

LDA.340 93 1 Load Accum. from Reg. 3
41 B4 UNP.4 1 Unpack two digits
42 C4 OUT.4 Output 1st digit from Reg. 41
43 C5 OUT.5 1 Output 2nd digit from Reg. 5
44 66 0C LDV.6.0C 2 A blank is stored in Reg. 6
46 67 0C LDV.7.0C 2 A blank is stored in Reg. 7
48 C6 OUT.6 Output blank1
49 C7 OUT.7 Output blank1
50 12 00 GTO.00 2 Branch to step 00

61

Area Problems Using “Go to
Subroutine” and “Return”

This program gives you an example of how and
when to use the instructions “Go to Subroutine”
and “Return."’

A “Go to Subroutine” instruction tells the com-
puter to branch to a specific program step which
contains an operation you may wish to use sev-
eral times inone program. Youcanuse the same
operation several times without having to re-
write it. When writing a program using this in-
struction, the next program step after the “Go
to Subroutine” instruction must be reserved for
returning from the Subroutine.

A program having a “Go to Subroutine”instruc-
tion must have a “Return from Subroutine” in-
struction as well.

After you enter this program, you will be able
to find the area of a rectangle or the area of a
triangle. First, enter the base measurement-
then, enter the height measurement. Press 1 to
find the area of a rectangle. (Base X Height =
Area). Press 2 to find the area of a triangle.
(Base X Height = Area)

2
Before entering this program, refer to the pro-
gram on pages 69 and 70 while we explain how
it works.

62

Program steps 00 through 08 will be the same
for both problems.

(00 through 08) Step 08programs your selection
of 1) rectangle area problem, or 2) triangle area
problem to be loaded into the Accumulator.First,
we’ll see what happens when1is loadedinto the
Accumulator.

(09 and 10) Steps 09 and 10 instruct the com-
puter to branch to Program step 13 if the Ac-
cumulator (which contains 01) equals the
contents of Register 1 (which is 01). If we had
entered a 2, the computer would haveproceeded
from Program step 08 to Program steps 11and 12.

(13 and14) Program steps 13 and 14 instruct the
computer to go to step 66 which starts the mul-
tiplication subroutine.(Base X Height = Area of
Rectangle)

(66) Program step 66 loads the Accumulator
with the contents of Register 3 which contains
the base (Step 06). We’ll use 8 as our example
of the base measurement.

(67) Program step 67 adds the contents of Reg-
ister 3 (which contains the base measurement
of 8 in our example) to the contents of the Ac-
cumulator which now also contains 8.

(68) The contents of the Accumulator (8+8=16)
are stored in Register 5.

63

(69) The Accumulator is loaded with the con-
tents of Register 4 which contains the height.
We’ll use 3 as our example. This data was en-
tered into Register 4 in Program step 07.

(70) In Program step 70, the Accumulator is dec-
remented by 1. (Remember, in multiplying, the
multiplier is decremented by 1 with each addi-
tion operation until the multiplier equals 01).

(71) The contents of the Accumulator (now 2)
are loaded into Register 4.

(72 through 73) These instructions tell the com-
puter to branch to Program step 77 if the con-
tents of the Accumulator are equal to the con-
tents of Register 1. (Register 1=01). This was
accomplished in Program step 02.

(74) If the Accumulator does not equal 01 at
Program step 72, the Accumulator will move to
Program step 75 and be loaded from Register 6
which contains 16.

(75 and 76) Go to step 67. The addition process
is repeated until the amount in the Accumulator
is equal to the value of Register 1. When this
condition is achieved, the computer will branch
to Program step 77 as instructed by Program
steps 72 and 73.

(77) The Accumulator isloadedfrom Register 5.
(Register 5 now equals 24 which is the answer.)

64

(78) Program step 78 instructs the computer to
return from subroutine.

This returns the computer to program step 15
which unpacks the contents of Register 5.

Program steps 16 and 17 output the answer to
the screen.

Program step 18 tells the computer to go to the
blanking operation at program step 58.

Program steps 58 through 63 output blank
spaces that erase the old problem and make
room for a new one.

Program step 64 tells the computer to return to
step 00and to get ready to solve a new problem.

Now, we’ll see how this program computes the
area of a triangle (Base X Height -Area of Tri-

2
angle) For our example, we’ll use 6 as the base
and 2 as the height.

This time we will choose 2 (triangle routine) at
Program step 08 to load into the Accumulator.
Since Program steps 09 and 10do not apply, the
computer will jump to Program step 11.

Program step 11 instructs Odyssey2 to branch
to program step 20 for the triangle routine.

65

Program step 20 instructs Odyssey2 to branch
to step 66 for the multiply routine.

Program steps 66 through 75 perform the addi-
tion operations and continue to loop until the
Accumulator equals Register 1 (01). Then the
Odyssey2 branches to step 77.

Program step 77 loads the Accumulator with
Register 5, which holds the answer for B X H or
6 X 2 = 12. We must now divide this answer by 2
to find the area of a triangle.

Program step 78 instructs Odyssey2 to return to
the program step immediately following the
subroutine from which it branched originally.

Program step 22—a pause is implemented.

Program step 23 stores Accumulator (which
contains 12) in Register 3. This now becomes
the dividend.

Program steps 24 and 25 load Register 4 with
02; this becomes the divisor.

Program steps 26 and 27 load Register 7 with
00. This is the initialization operation, since this
Register will hold the sum of the subtraction
operations. (“Initialization” was first introduced
at the beginning of the One Digit Division Pro-
gram.)

66

Program step 28 loads Accumulator from Regis-
ter 4 (which contains the divisor, 2).
Program step 29 subtracts Accumulator from
Register 3 (which contains the dividend, 12).

Program step 30stores the difference (12- 2=10)
in Register 3; Register 3 = 10.

Program step 31loads Accumulator from Regis-
ter 7; Register 7 = 00.

Program step 32 adds one to the Accumulator.
Remember, this is done to keep track of the num-
ber of times we subtract the divisor from the
dividend.

Program step 33 stores sum in Register 7;
Register 7 = 01.

Program step 34 loads Accumulator from Regis-
ter 3; Register 3 = 10, dividend.

Program steps 35 and 36 order a branch to step
54 if Accumulator equals 00.

Program step 37 loads Accumulator from Regis-
ter 4; Register 4 = 2, divisor.

Program steps 38 and 39 branch to step 42 if
Register 3 is less than the Accumulator.

67

Program step 40. If the Odyssey2 has not
branched at this point to another step number,
this instruction loops the Odyssey2 back toPro-
gram step 29, so that additional subtraction
operations can be performed.

At Program step 35, the computer, after com-
pleting the subtraction operations so that the
Accumulator and Register 3 (the dividend) equal
00, branches to step 54.* At Program step 54, the
Accumulator is loaded from Register 7 (which
contains the number of times we subtracted the
answer). Program step 55 then unpacks this an-
swer and Program steps 56 and 57 output the
answer to the screen.Blanks are outputed, since
in this example there is no remainder, and at step
64, the Odyssey2 is instructed to return to Pro-
gram step 00 in preparation for a new problem.

Now, you’re ready to enter the program into
your Odyssey.2 Be sure to turn the power off and
on to erase any previous data.

*Note: If there had been a remainder, the com-
puter would have branched at Program step
38 to step 42 and when the answer was un-
packed and displayed on the screen, a (+R)
would also have been displayed.

68

“Go to Subroutine” and “Return”

Hex Assembler
Step Code Code Byte Remarks

00 6B 00 LDV.B.00 2 Reg.B = 00 (Positioning)
02 61 01 LDV.1.01 2 Area of rectangle—select (1)
04 62 02 LDV.2.02 2 Area of triangle—select (2)
06 73 INP.3 1 Input value (base) to Reg. 3
07 74 INP.4 1 Input value (height) to Reg. 4
08 04 INA 1 Select 1or 2
09 31 13 BEQ.1.13 2 Go to rectangle routine
11 32 20 BEQ.2.20 2 Go to triangle routine
13 14 66 GTS.66 2 Go to multiply subroutine
15 B5 UNP.5 1 Unpack Reg. 5 and 6
16 C5 OUT.5 Output 1st digit1
17 C6 OUT.6 1 Output 2nd digit
18 12 58 GTO.58 2 Go to blanking operation
20 14 66 GTS.66 2 Go to multiply subroutine

NOP22 00 No operation (pause)1
23 A3 STO.3 1 Store Accum. in Reg. 3
24 64 02 LDV.4.02 2 Load Reg. 4 with 02
26 67 00 LDV.7.00 2 Load Reg. 7 with 00

LDA.428 94 1 Load Accum. from Reg. 4
29 D3 SUB.3 1 Subtract Accum. from Reg. 3
30 A3 STO.3 1 Store difference in Reg. 3
31 97 LDA.7 1 Load Accum. from Reg. 7
32 03 INC
33 A7 STO.7

1 Add one to Accum.
1 Store sum in Reg. 7

34 93 LDA.3 1 Load Accum. from Reg. 3
35 13 54 BRZ.54 2 Branch to step 54 if A = 0
37 94 LDA.4 1 Load Accum. from Reg. 4
38 53 42 BLS.3.42 2 Branch to step 42 if Reg. 3

is less than Accum.
40 12 29 GT0.29 2 Go to step 29

69

Hex Assembler
Step Code Code Byte Remarks

42 97 LDA.7 1 Load Accum. from Reg. 7
43 B8 UNP.8 1 Unpack Reg. 8 and Reg. 9
44 C8 OUT.8 1 Output 1st digit
45 C9 OUT.9 1 Output 2nd digit
46 6E 10 LDV.E.10 2 Load Reg. E with Symbol (+-)
48 6F 13 LDV.F.13 2 Load Reg. F with Symbol (R)

Output (+)50 CE OUT.E 1
51 CF OUT.F Output (R)1
52 12 58 GTO.58 2 Go to step 58
54 97 LDA.7 1 Load Accum. from Reg. 7
55 B8 UNP.8 1 Unpack Reg. 8 and Reg. 9
56 C8 OUT.8 1 Output 1st digit
57 C9 OUT.9 Output 2nd digit1
58 6E 0C LDV.E.0C 2 Load Reg. E with a blank
60 6F 0C LDV.F.0C 2 Load Reg. F with a blank
62 CE OUT.E 1 Output blank
63 CF OUT.F Output blank1
64 12 00 GTO.00 2 Go to step 00
66 93 LDA.3 1 Load Accum. from Reg. 3
67 E3 ADD.3 1 Add Reg. 3 to Accum.
68 A5 STO.5 Store Accum. in Reg. 51
69 94 LDA.4 1 Load Accum. from Reg. 4

DEC70 02 1 Decrement Accum. by 1
71 A4 STO.4 1 Store Accum. in Reg. 4
72 31 77 BEQ.1.77 2 If Accum. = Reg.1, branch to step 77

LDA.574 95 1 Load Accum. from Reg. 5
75 12 67 GTO.67 2 Go to step 67
77 95 LDA.5 1 Load Accum. from Reg. 5
78 07 RET 1 Return to subroutine

70

One Digit Addition Flash Card

When you enter this program, a Flash Card ad-
dition game will appear on your television set. An
unsolved addition problem flashes on the screen.
You enter the solution through the keyboard.
If the answer is less than 10, preface the number
with a 0.

This program is different from the Flash Card
game which is already programmed in the com-
puter. In this program, the old problem is erased
automatically and a new problem is displayed
on the screen. There is also a rather interesting
reward for entering the correct answer. Program
steps 45 through 61 input a computerized musi-
cal comedy production number. Program steps
70 through 78 are the rests (pauses) in the
melody.

Program step 26 is a packing operation. The
data from Register 3 and Register 4 is combined
and loaded into the Accumulator.

Program steps 62 through 69 reset Register B
to 00 so that it’s ready for the next problem.

Program steps 62 through 69 reset Register 3
to 00 so that it’s ready for the next problem.

71

One Digit Addition Flash Card

Step Hex Assembler Byte Remarks
Code Code

00 6A 0C LDV.A.0C 2 Load a blank into Reg. A
02 68 10 LDV.8.10 2 Load a (+) sign into Reg. 8
04 69 2B LDV.9.2B 2 Load an (=) sign into Reg. 9
06 6C 2D LDV.C.2D 2 Load (N) into Reg. C
08 6D 17 LDV.D.17 2 Load (O) into Reg.D
10 08 1 Load Accum. with random numberRND

1 Separate digits11 B0 UNP.0
12 6B 00 LDV.B.00 2 Set output position

1 Output first digit14 C0 OUT.0
1 Output (+) sign15 C8 OUT.8

16 C1 OUT.1 1 Output second digit
1 A no operation instruction must follow

every third output instruction in a row
17 00 NOP

18 C9 OUT.9 1 Output (=) sign
19 90 LDA.0 1 Load Accum. from Reg. 0
20 E1 1 Add Reg. to the Accum.ADD.1

Store sum in Reg. 221 A2 STO.2 1
1 Input first digit guess22 73 INP.3
1 Output first digit guess23 C3 OUT.3
1 Input second digit guess24 74 INP.4

25 C4 OUT.4 1 Output second digit guess
Combine digits. This is a packing operation.PAK.3 126 83

1 Output blank27 CA OUT.A
28 32 45 BEQ.2.45 2 If correct guess...buzz

1 Output (N)30 CC OUT.C
1 Output (O)31 CD OUT.D

32 6B 04 LDV.B.04 2 Set output position to 04
1 Input first number of second guessINP.334 73
1 Output first number35 C3 OUT.3
1 Output blank36 CA OUT.A

72

Step Hex Assembler Byte Remarks
Code Code

1 Output blank37 CA OUT.A
1 No operation38 00 NOP
1 Output blank39 CA OUT.A
1 Output blank40 CA OUT.A

41 6B 05 LDV.B.05 2 Set output position to 05
43 12 24 GT0.24 2 Go to step 24
45 05 S IG 1 Buzz

2 No sound46 14 70 GTS.70
48 05 SIG 1 Buzz

SIG 1 Buzz49 05
50 05 SIG 1 Buzz
51 14 70 GTS.70 2 No sound

1 Buzz53 05 SIG
2 No sound54 14 70 GTS.70
2 No sound56 14 70 GTS.70
1 Buzz58 05 SIG

59 14 70 GTS.70
61 05 SIG

2 No sound
1 Buzz

62 6B 00 LDV.B.00 2 Set position to 00
1 Output blank64 CA OUT.A
1 Load Accum. from Reg. B65 9B LDA.B
2 If Accum. = 0, the computer

branches to step 10
66 13 10 BRZ.10

68 12 64 GT0.64 2 Go to step 64
70 67 00 LDV.7.00 2 Load Reg. 7 with 00
72 6E 75 LDV.E.75 2 Load Reg. E with 75

1 Load Accum. from Reg. E74 9E LDA.E
1 No operation75 00 NOP
1 Subtract 1 from Accum.76 02 DEC

77 27 75 BNE.7.75 2 Branch if Accum. is not = to
Reg. 7 which contains 00

1 Return from subroutine79 07 RET

73

Three Ways to Enter and
Output a Letter

These three sample programs are presented to
show you the three different instructions which
can be used to input and output a letter on the
screen.

For the first example, wehave chosen to input
and display the letter “H” or 1D in HEX Code.
With this type of program, whatever is loaded
into the register and is outputed to the screen
will remain on the screen. You cannot change
it. With this program, you could enter a com-
plete message and have it remain on thescreen.

The second example uses the instructions,“In-
put to a Register” and “Output from a Register,”
but does not designate any particular value.
Thus, once the program is entered, any value
can be entered and it will be displayed on the
screen.

The third example is similar to the second in
that any value may be entered, but it is inputed
to the Accumulator rather than to a register.

You will note, in all threeexamples,the last in-
struction was “Input to a Register” which was
used as a pause since no output instruction was
indicated, thus only one keyboard depression
could be made. Now, try this—using example
two or three, program the appropriate instruc-
tion sets in order to create a loop so that all 11
positions on the screen may be used. (Hint! Re-
fer back to the addition programs. Check to see
how they let you keep entering one problem
after another by returning to a previous pro-
gram step.)

74

Three Ways to Enter and
Output a Letter(For this example, use “H”)

Hex Assembler
Step Code Code Byte Remarks

A

Positioning
Load Reg. 0 with H
Output Reg. 0 = H
Input to Reg. 1 (used as pause)

6B 00
60 1D

00 LDV.B.00
LDV.0. 1D
OUT.0

2
02 2

C0 104
7105 INP.1 1

B

6B 00 Positioning
Input Reg. 0
Output Reg. 0
Input Reg. 1 (pause)

00 LDV.B.00
INP.0
OUT.0

2
7002 1
C003 1
7104 INP.1 1

C
Positioning
Input Accum.
Output Accum.
Input Reg. 1 (pause)

6B 0000 LDV.B.00 2
0402 INA 1
0B OTA

INP.1
03 1

7104 1

75

2 Six Letter Guess

After being entered, this program allows you to
enter a six letter word into theOdyssey.2 Six dots
appear on the screen and your opponent enters
a letter. If it is used in the word, it appears on the
screen in the correct position. If the letter does
not appear in the word, nothing happens.

Let’s look at some of the program steps in de-
tail:

Program step 00 used as a flag or reference
position. 01 is loaded into Register 7. 01 was
chosen rather than 00 because 01 can only mean
the decimal number 1 and nothing else, while 00
can be a number or the instruction “No Opera-
tion.”

Program steps 04, 05, and 06 input 1st letter
into Register 9, load a dot into Register 1, output
Register 1 to screen. This is an initialization
process and steps 07 through 27 are the same.
This is done so that the six dots appear on the
screen when the word is first inputed. Note
the Register Use column.

Program steps 28 through 37 position Odys-
sey2 to 00each time a guess is taken and output
to the screen either the correct letter guessed or
a dot.

Program steps 38 and 39 instruct Odyssey2 to
return to 00 if Accumulator equals the contents
of Register 7. The computer is now ready for a
new game. (Note: This is a flag or reference
point.)

Program step 40 inputs a guess to the Accu-
mulator. It is compared to each register in Pro-
gram steps 41 through 52.

Program steps 53 and 54 instruct Odyssey2 to
go to Program step 71 if a letter in the word is
missing.

76

Program steps 71 and 72 load Register 8 with a
dot.

Program step 73 loads the Accumulator from
Register 8.

Program steps 74 through 85 instruct Odys-
sey2 to branch to Program step 28 if any register
(1 through 6) is equal to the Accumulator (in
other words, if the register still remains a dot.)

Program steps 86 and 87 load Register 7 with
a 2B (=). This is a flag *

Program step 88 loads the Accumulator from
Register 7.

Program steps 89 and 90 sound the buzz
which indicates the word has been displayed
correctly.

Program steps 91 and 92 instruct Odyssey2 to
go to step 28 for positioning.

Program steps 28 through 37 display word on
screen.

Program steps 38 and 39 instruct Odyssey2 to
return to 00 if Accumulator = Register 7.

Program step 00 loads Register with 01 and
game continues.
‘Note: The 2B(=) sign was used as a flag in this instance:
however, any sign could have been used instead.

77

Six Letter Guess

Step Hex Assembler Byte Remarks
Code Code

Register/Use

Reg. 7 is loaded with
reference position (flag) 01

00 67 01 LDV.7.01 2

02 6B 00 LDV.B.00 2 Positioning 1—1st dot
Input 1st letter 2—2nd dot04 79 INP.9 1

05 61 27 LDV.1.27 2 Read 1st dot 3—3rd dot
07 C1 OUT.1 1st dot on screen 4—4th dot1

INP.A Input 2nd letter08 7A 1 5—5th dot
09 62 27 LDV.2.27 2 Read 2nd dot 6—6th dot
11 C2 OUT.2 1 2nd dot on screen 7-01 (flag)
12 7C INP.C Input 3rd letter1 8—7th dot
13 63 27 LDV.3.27 2 Read 3rd dot 9—1st letter
15 C3 OUT.3 3rd dot on screen A—2nd letter1
16 7D INP.D Input 4th letter1 B—Positioning
17 64 27 LDV.4.27 2 Read 4th dot C—3rd letter
19 C4 OUT.4 4th dot on screen D—4th letter1

Input 5th letter20 7E INP.E 1 E—5th letter
21 65 27 LDV.5.27 2 Read 5th dot F—6th letter
23 C5 OUT.5 1 5th dot on screen
24 7F INP.F Input 6th letter1
25 66 27 LDV.6.27 2 Read 6th dot
27 C6 OUT.6 1 6th dot on screen
28 6B 00 LDV.B.00 2 Position on screen
30 C1 OUT.1 Put dots on screen1
31 C2 OUT.2 1 Put dots on screen
32 C3 OUT.3 Put dots on screen1

NOP No operation33 00 1
34 C4 OUT.4 Put dots on screen1
35 C5 OUT.5 Put dots on screen1
36 C6 OUT.6 1 Put dots on screen

NOP No operation37 00 1
78

Step Hex Assembler ByteRemarks
Code Code

Register/Use

38 37 00 BEQ.7.00 2 Reset
40 04 INA 1 Input guess to Accum.
41 39 55 BEQ.9.55 2 Letter in word
43 3A 58 BEQ.A.58 2 Letter in word
45 3C 61 BEQ.C.61 2 Letter in word
47 3D 64 BEQ.D.64 2 Letter in word
49 3E 67 BEQ.E.67 2 Letter in word
51 3F 70 BEQ.F.70 2 Letter in word
53 12 71 GTO.71 2 Wrong guess

STO.155 A1 1 1st letter correct
56 12 43 GT0.43 2 Check next position
58 A2 STO.2 1 2nd letter correct
59 12 45 GT0.45 2 Check next position
61 A3 STO.3 1 3rd letter correct
62 12 47 GT0.47 2 Check next position
64 A4 STO.4 1 4th letter correct
65 12 49 GT0.49 2 Check next position
67 A5 STO.5 1 5th letter correct
68 12 51 GTO.51 2 Check next position

STO.670 A6 1 6th letter correct
71 68 27 LDV.8.27 2 Load Reg. 8 with dot
73 98 LDA.8 1 Accum. is loaded from Reg. 8

which contains a dot
74 31 28 BEQ.1.28 2 Position (Step 28)
76 32 28 BEQ.2.28 2 Position (Step 28)
78 33 28 BEQ.3.28 2 Position (Step 28)
80 34 28 BEQ.4.28 2 Position (Step 28)
82 35 28 BEQ.5.28 2 Position (Step 28)
84 36 28 BEQ.6.28 2 Position (Step 28)
86 67

-
2B LDV.7.2B 2 Set flag to (=)

88 97 LDA.7 1 Accum. loaded from Reg. 7
which contains 01

89 05 SIG 1
SIG90 05 1

91 12 28 GT0.28 2 Positioning
79

Message

After being entered, this program allows you to
press any number between 1and 6 to call a pro-
grammed message to the screen. In the program
as it is written, we have entered six messages.
After studying the program, you can enter your
own messages.

You will note the first Program steps, 00 and
01, are load a value into Register 0and the value
is 90. You will note that Program step 90 is the
“No Operation” instruction after the last mes-
sage, and that program steps 91 through 96 are
a relocation table. The Hex Code at each of the
program steps is the first program step number
of each of the messges. It is this first instruc-
tion, “load a value into Register 0and the value
is 90’ which allows you to select any number
between 1 and 6 to call a message to the screen.
Let’s look at a few of theother instructions in the
program.

Program steps 02 and 03 load Register 1 with
0C (blank). This blank will be used as the space
between words in messages which have more
than one word.

Program step 04 inputs to the Accumulator;
you may select 1,2,3,4,5,6, on the keyboard in
order to call to the screen any one of six mes-
sages and whichever you choose will be inputed
to the Accumulator.

Program step 05—add Register 0 to Accumu-
lator. In other words, if we had chosen number 2,
the contents of Register 0 (which are 90) are
added to the Accumulator (which is 2), thus 92
is now in the Accumulator.

Program step 06—store Accumulator in Reg-
ister C; Register C now equals 92.

80

Program step 07—Register C moves the pro-
gram counter to Program step 92, and the con-
tents at Program step 92 (which are 36) are
loaded into the Accumulator. This is the “Move”
instruction or “Load Accumulator from a pro-
gram step.” Register C is always used with this
instruction.

Program step 08—store Accumulator (36) in
Register C; C now equals 36.

Program steps 09 and10load Register B (posi-
tioning) with the value 00 (the furthest left posi-
tion).

Program steps 11 and 12 load Register 2 with
the number 11 (the number of positions on the
screen).

Program steps 13 and 14 load Register 3 with
00 to be used as a reference.

Program step 15—load the Accumulator from
Register 1; Register 1equals a blank. This begins
the loop which erases an old message from the
screen in preparation for a new message. You
will note program steps 15 through 21, load the
Accumulator with a blank, output the blank,
load the Accumulator from Register 2 (11), de-
crement the Accumulator by 1, store the result
in Register 2,and theOdyssey2 branches to step
15 if the Accumulator is not equal to Register 3
(00). Remember, when erasing, each of the 11
positions must be filled with a blank.

Program steps 22 and 23 load Register B with
00 (furthest left position). This is used to posi-
tion Register B in preparation for a new message.

Program step 24 takes the contents of Regis-
ter C (36), moves to that program step (36) and
loads the contents at that program step (14) into
the Accumulator.

Program steps 25 and 26: If the Accumulator
equals 00 at this point, the Odyssey2 would
branch to Program step 04, and prepare itself for
a new message. If the Accumulator contains a
value (as in this example, it contains 14), then
the Odyssey2 steps to Program step 27.

81

Program step 27 outputs the contents of the
Accumulator to the screen; a “T”appears. Refer
to your Hex Code chart.

Program steps 28 and 29 instruct Odyssey2 to
go to step 24 and loop through the previous in-
structions to display message * When the mes-
sage is completed (note at the end of each
message, there is a no operation instruction,
00), and the Odyssey2 steps to Program step 25,
the Accumulator will be equal to Register 3 (00),
and the Odyssey2 will branch to Program step
04 in preparation for a new message.

‘Note: When repeating the loop at Program step 24, the con-
tents of Register C remain the same (36); however, the pro-
gram counter increments by one each time so that the ap-
propriate program step is reached.

82

Message

Hex Assembler
Step Code Code Byte Remarks Register/Use

00 60 90 LDV.0.90 2 Location table 0—90
02 61 0C LDV.1.0C 2 A blank is loaded into Reg. 1 1—0C (blank)
04 04 INA 1 Press 1,2,3,4,5, or 6 2—0B (11)
05 E0 ADD.0 1 Add Reg. 0 to Accum. 3—00
06 AC STO.C Contents of Accum. are stored

in Reg. C
1 4

07 09 MOV 1 Accum. is loaded with contents of 5
Reg. C which is a program
step number

08 AC STO.C Contents of Accum. is stored
in Reg. C

1 6

09 6B 00 LDV.B.11 2 Load Reg. B with 00
(positioning)

7

11 62 11 LDV.2.0B 2 Load Reg. 2 with the number 11 8
(positions on screen)

13 63 00 LDV.3.00 2 Load Reg. 3 with 00
(used as a reference)

9

15 91 LDA.1 1 Load Accum. from Reg. 1 A
16 0B OTA 1 Output blank from Accum. B
17 92 LDA.2 1 Load Accum. from Reg. 2 C
18 02 DEC Decrement Accum. by 11 D
19 A2 STO.2 1 Store contents of Accum

in Reg. 2
E

20 23 15 BNE.3.15 2 Loop to program step 15 and
output more blanks if Accum.
is not equal to Reg. 3

F

22 6B 00 LDV.B.00 2 Positioning of Reg. B
24 09 MOV Reg. C moves to program step

and loads contents at the
program step into the Accum.

1

25 33 04 BEQ.3.04 2 Restart—if Accum. equals 00,
return to step 04

27 0B OTA Output contents of Accum.1
83

Hex Assembler
Step Code Code Byte Remarks Register/Use

28 12 24 GT0.24 2 Go to step 24 to display message
1 Output (H)30 1D *

* Output (E)31 12 1
Output (L)32 0E 1

33 0E * Output (L)1
1 Output (O)34 17 *

1 End Mess.135 00 *

1 Output (T)36 14 *

1 Output (A)37 20
1 Output (K)38 1F *

1 Output (E)39 12 *

40 0C 1 Blank*

1 Output (A)41 20 *

1 Blank42 0C
1 Output (L)43 0E *

1 Output (O)*44 17
1 Output (O)45 17
1 Output (K)46 1F
1 End Mess. 247 00 *

1 Output (R)*48 13
1 Output (E)49 12 *

1 Output (M)50 26 *

1 Output (A)51 20
1 Output (R)52 13
1 Output (K)*53 1F
1 Output (A)54 20
1 Output (B)55 25 *

1 Output (L)56 0E *

1 Output (E)57 12 *

1 End Mess. 358 00 *

1 Output (N)59 2D
1 Output (E)60 12
1 Output (W)61 11
1 Blank62 0C *

84

Hex Assembler
Step Code Code Byte Remarks Register/Use

1 Output (F)63 1B *
1 Output (O)*64 17
1 Output (R)*65 13
1 Blank66 0C *
1 Output (7)67 07 *
1 Output (8)68 08 *
1 End Mess. 469 00 *
1 Output (Q)70 18 *
1 Output (U)71 15 *
1 Output (E)*72 12
1 Output (S)73 19
1 Output (T)*74 14
1 Output (I)*75 16
1 Output (O)*76 17
1 Output (N)77 2D
1 Output (S)*78 19
1 Output (?)*79 0D
1 End Mess. 5*80 00
1 Output (C)81 23
1 Output (O)82 17 *
1 Output (M)83 26 *
1 Output (E)84 12 *
1 Blank*85 0C
1 Output (B)86 25 *
1 Output (A)87 20
1 Output (C)88 23 *
1 Output (K)*89 1F

End Mess. 6* 190 00
91 30 1 Location table
92 36 * 1 Location table

*93 48 1 Location table
*94 59 1 Location table

95 70 * Location table1
* 196 81 Location table

•When entering single letters and numbers, the Hex Code only is used,
since there is no Assembler Code for them. 85

You have now had some experience in en-
tering programs and should have some insight
into how a computer “thinks!’

You can get a deeper understanding of your
Odyssey2’s logic processes by trying to enter
these programs without using the references.

First, go back and review one of the shorter
programs. Enter it into the computer. Use your
reference at this stage—but study it for sequence
of events, logic patterns and flow. Then, go to
one of the blank program sheets in the back of
this book and try writing the program from
scratch. No peeking.

Here are some things you’ll want to keep in
mind.

Odyssey2 has 16 registers. Each register has
room for 8 bits of information.

Your computer has a capacity of 99 program
steps. There are 11 positions available on the
screen. The contents of Register B position data
on the screen.

You can only output data to the screen from a
register or the Accumulator.

Keep the fold-outs open so you can refer to
the instruction sets and check your data traffic
patterns.

As you begin to write these programs by your-
self, you’ll get used to thinking along a comput-
er’s logic lines. You may want to try writing varia-
tions of the programs in this book. You may even
want to try creating original programs. If some-
thing doesn’t work, try it another way. You’re
playing with electronic building blocks that have
endless combinations of possibilities.

Once you feel you have a good understanding
of how Odyssey2 does its computing, consider
yourself graduated with high honors. If there’s
a computer store in your area, drop in and visit.
You’ll find friendly professionals who are al-
ways ready to talk computers and share knowl-
edge.

And you now knowfar more thanmost people
who walk in the door.86

Operating Mode Review

There are eight operating modes in the
Odyssey? They are:
Command
Execution
Display
Program
Let’s look at each in detail and refer to the
operation diagram on the fold-out as you
read about each mode.
Command Mode

To enter the Command Mode, you may
press “Reset” or “Clear” if you are in any
of the following modes:
Assembler
Display
Hex Input

If you are in the Execution Mode, to enter
the Command Mode, press “Reset’.’

Once in the Command Mode, you may
enter the following modes:
Execution
Display
Program
by pressing:
E—To enter the Execution Mode. Program
execution will begin with step 00. You are
ready to play your game, write your mes-
sage, solve your problem, etc. if you have
already entered your program.

Assembler
Hex Input
Input
Roll

87

or by pressing:
C—To enterthe Continue Mode. This mode
is used to locate a problem within a regis-
ter. For example, let’s assume we have a 40
step program that is not working correctly.
A branch decision was made at some lower
step number and we would like to see if the
correct branch was taken to the step num-
ber we had indicated, say Program step 14.
Using the Roll Mode, we would move to
Program step 14 and replace the Op Code
at that step number with a halt statement
(Op Code FF). To examine the contents of
the program counter (which would contain
the Program step 14, thus informing us of
the correct branch), we would press (D) to
enter the Display Mode. We would then
press (P) to display the contents of the pro-
gram counter. If the correct result is dis-
played, we would press “Clear” which re-
turns us to the Command Mode. We now
press (P) to enter the Program Mode, then
press (M) to enter the Hex Input Mode, and
then press (R) to enter the Roll Mode. We
now must roll up (U) from step 00 to step14
where the FF statement is located and re-
place it with the original Op Code. We may
now place an FF statement at some other
step to check another part of the program.
Please note that only one FF statement at
a time can be present in the program.

or by pressing:
D—To enter the Display Mode (to be ex-
plained in detail later).

88

or by pressing:
P—To enter the Program Mode (to be ex-
plained in detail later).
Display Mode

To enter the Display Mode, press (D) from
the Command Mode. In this mode, you may
display on the screen any register you wish
to review. This mode is often used to trouble-
shoot problems, since you can check the
contents of each register.

To check the registers, you press:
0 To display the contents of Register 0
1 To display the contents of Register 1
2 To display the contents of Register 2
3 To display the contents of Register 3
4 To display the contents of Register 4
5 To display the contents of Register 5
6 To display the contents of Register 6
7 To display the contents of Register 7
8 To display the contents of Register 8
9 To display the contents of Register 9
A To display the contents of Register A
B To display the contents of Register B
C To display the contents of Register C
D To display the contents of Register D
E To display the contents of Register E
F To display the contents of Register F
P To display the contents of the Program

Counter
S To display the contents of Subroutine

Counter
X To display the contents of the

Accumulator
To leave the Display Mode, press “Clear”

or “Reset” to enter the Command Mode.
89

Program Mode
To enter the Program Mode, press (P)

from the Command Mode, or press “Clear”
if you are in the Roll Mode.

The Program Mode sets the Odyssey;> to
accept a program. From this mode, press
(A) to enter Assembler Language or press
(M) to enter Hex Language (Op Code).

To leave the Program Mode,press “Reset”
and you will enter the Command Mode, or
you may leave the Program Mode by press-
ing (A) to enter the Assembler Mode or by
pressing (M) to enter the Hex Input Mode.
Assembler Mode
To enter the Assembler Mode, press (A) if
you are in the Program Mode, or press
“Clear” if you are already in the Input Mode.

Once you have pressed (A), you are in
the Assembler Mode and you may now
press (I) to enter the Input Mode, or press
(R) to enter the Roll Mode.

To leave the Assembler Mode, press
“Clear” or “Reset” to enter the Command
Mode, or press any valid Assembler Mode
command (i.e., [I] or [R]). (Be sure to refer
to the fold-out operational diagram.)
Hex Input Mode

To enter the Hex Input Mode, press (M)
if you are in the Program Mode or press
“Clear” if you are in the Input Mode.

Once in the Hex Input Mode, press (I) to
enter the Input Mode, or press (R) to enter
the Roll Mode.

To leave Hex Input Mode, press “Clear”
or “Reset” to enter Command Mode or press

CLEAR

90

any valid Hex Input Mode command (i.e.,
[I] or [R]).
Input Mode

To enter the Input Mode, press (I) if you
are in either Assembler or Hex Input Mode.

Once you are in the Input Mode, you may
enter any assembler language instruction
if you have entered from the Assembler
Mode, or you may enter any HEX language
instruction (Op Code) if you have entered
from the Hex Input Mode. The Input Mode
is the mode in which you will enter your
program.

To leave the Input Mode, you may press
“Reset” to enter the Command Mode, or
press “Clear” to enter the Assembler or
Hex Input Mode.
Roll Mode

To enter the Roll Mode, press (R) if you
are in either Assembler or Hex Input Mode.

Once you are in the Roll Mode, you may
press (U) to display the program steps from
00 to 99, or you may press (D) to display
the program steps from 99 to 00. This mode
is often used to check a program step to be
sure it contains the correct data.

To leave the Roll Mode, press “Clear” to
enter the Assembler or Hex Input Mode.

91

How a Computer Adds1 +1

1 + 1 = ?

t
1 1 0Or AndKeyboard +1

0

NotAnd

Symbol/Sound Generator j
converts Binary 10into

decimal equivalent 2
10

1 + 1 = 2

Glossary

Glossary of Frequently Used
Computer Terms

Accumulator. A working register within a
computer. It is a small memory device that
provides temporary data storage and/or
instruction storage for the ALU. It can also
store the result of the ALU’s operation and
may be used as an operand source for the
ALU.
Applications. A job given to the computer
to do.

Application Software. Programs written for
the computer.
Arithmetic Logic Unit (ALU). A part of the
Central Processing Unit (CPU). The ALU
accepts data from different sources, acts
upon it, then outputs one result. It is in the
ALU that all arithmetic and logic operations
are performed. It is also known as the“num-
ber cruncher” since it’s here that all binary
data is acted upon.

Binary Numbers. A number based on two
digits. 1and 0. With enough 1’s and 0’s, any
number can be expressed. The inside of a
computer is basically a series of on-off
switches that turn on an electrical charge
to express 1. They turn off the electrical
charge to express 0. A computer performs
binary calculations by sending these on-off
signals through logic gates which pass on

•

92

information according to the rules built in-
to them

The functions of these logic gates are
called AND, OR and NOT

This diagram demonstrates how a com-
puter’s logic circuit adds 1and 1.
1. Two electrical currents enter the logic
circuit. (Remember—the presence of the
electricity signals 1. The absence signals 0.)
2. The incoming currents flow to the OR
gate at the top and to the first AND gate at
the bottom. The OR gate lets the current
through because at least one of the circuits
is carrying an electrical charge. The AND
gate lets the current through because both
circuits are carrying a charge.
3. The current at the top heads to the sec-
ond AND gate. The bottom stream is divided
with one part flowing to the exit and the
other part heading toward the NOT gate.
4. A NOT gate is a “reverser” It changes
Ts to 0’s and 0’s to 1’s. The NOT gate turns
off the current flowing through it.
5. The second AND gate senses the ab-
sence of current from the NOT gate and
the presence of current coming to it from
the OR gate.
6. Since one of the streams entering the
second AND gate is charged and the other
is not, the second AND gate will not allow
any current to pass to the exit.
7. The original two electrical currents rep-
resenting 1 and 1 come out of the logic cir-
cuit as only one stream of electrical current.

93

This is expressed as 1 and 0—the binary
equivalent of 2.

Computers operate only on binary num-
bers. A computer can add, subtract, mul-
tiply (by adding the same number repeat-
edly), and divide (by using subtraction and
addition). When a computer adds and sub-
tracts binary numbers, there are several
rules which it follows:
Binary Addition:

0 0 1 1
0 +1 +0 +1
0 110with a carry of 1

A carry bit is produced from the addition
of 1+1. Binary carries are treated in the same
way as decimal carries; they are carried to
the left.
Example: (1) (1) (1) (1)

9 = 0 0 0 0 1 0 0 1
+7 = +0 0 0 0 0 1 1 1
1 6 = 0 0 0 1 0 0 0 0

Binary Subtraction:
1. All ones in the subtrahend are changed
to zeros and all zeros are changed to ones.
2. A one is then added to the least signifi-
cant bit of the new subtrahend.
3. Add the result to the minuend and ignore
the carry bit, if there is one.

Example: 10 = 0000 1010 minuend
-5 = 0000 0101 subtrahend

5 =

94

Rule 1: 0000 0101 becomes 1111 1010
Rule 2: 1111 1010

1+
1111 1011

Rule 3: 0000 1010
+1111 1011
0000 0101

Listed below are some binary numbers
and their decimal equivalents.

Try adding and subtracting in binary. It
really works.
1=0001 5=0101 9=1001 13=1101
2=0010 6=0110 10=1010 14=1110
3=0011 7=0111 11=1011 15=1111
4=0100 8=1000 12=1100 16=0001 0000

Basic. Beginners All-Purpose Symbolic In-
struction Code. This is one of the simplest
programming languages and is in general
use on many computers.

Bit. The basic unit of information used by
a computer. A bit is a binary number. 1or 0.
A simple pocket calculator may store less
than a hundred bits of information. A large
computer may have somewhere between
a billion and a trillion bits in storage.

Byte. A byte is eight bits on smaller com-
puters, such as your Odyssey.2 A byte can
be twelve, sixteen or more bits on larger
computers.

Chip. Nickname for Integrated Circuit. (IC)

95

Cobol. Common Business-Oriented Lan-
guage. A computer programming language
used widely in the business world.

Computer System. The computerand all of
its related hardware. Your Odyssey2 sys-
tem consists of the console, the computer
cartridge and your TV—the video terminal.

Control Unit. The internal part of a com-
puter that directs the binary traffic.

Core Memory. The internal memory of a
computer. Today, this memory consists of
Integrated Circuits (IC’s) . In the old days,
the core memory was stored on magnetic
cores made from tiny rings of magnetic
material strung on a grid of fine wire.

Central Processing Unit (CPU). This is the
brain of the computer. The CPU of your
Odyssey2 is contained on a microprocessor
which can make over 1,000,000 electronic
decisions every second.

Cursor. A visual indicator on the video dis-
play terminal of some computers that sig-
nals where a character must be corrected
or the position where data should be en-
tered. It is usually a star or an asterisk.

Data. Refers to all letters, numbers, sym-
bols and facts which can be processed or
used by a computer.

External Memory. That memory used by
the computer which is not stored within the
computer itself. External memory is usually

96

stored on cassette tape, floppy or hard disk,
or paper tape.
Firmware. A combination of hardware and
software. This term is generally used in
reference to software stored permanently
on Read Only Memory chips (ROM).

Floppy Disk. It’s thin, flexible and looks like
a square record—a storage device that
typically holds more than 250,000 eight bit
bytes of information.

Fortran. FORmula TRANslator. The most
widely used scientific computer program-
ming language.

Hardware. The physical devices that form
a computer system—including all mechan-
ical, magnetic, electronic, electromechan-
ical and electric components. “Software”
contains the instructions that tell all this
what to do.

High-Level Language. Software that makes
it possible to program a computer in more
or less plain English. Basic, Cobol and For-
tran are all examples.

Input. The data entered into computers.

Integrated Circuit (1C). Many hundreds of
electronic circuits on a single chip of sili-
con. This circuitry can be contained in less
than a quarter inch square and can make
more than one million electronic decisions
per second. There are no moving parts. It
is theoretically possible for an integrated
circuit to function for thousands of years.

97

Internal Memory. Memory located within
the computer itself.

Interface. Refers to the connection of one
computer component to another. When
your TV is connected to your Odyssey,2 it
is interfaced.

Machine Language (Binary). The instruc-
tions that a computer actually follows.
High-level language instructions in Basic,
Cobol and Fortran are broken down into
machine language by the computer before
they are executed.
Maxicomputers. The giant computers used
by governments, insurance companies and
businesses.

Microcomputers. Small computers with
Central Processing Units contained on one
single integrated circuit called a micro-
processor.

Microprocessor. An integrated circuit that
contains the complete central processing
unit for a computer. Today, microprocessors
are designed by computer technology on a
much larger than life scale. Then, the cir-
cuits are transferred photographically to a
chip of silicon less than one quarter of an
inch square.
Nonvolatile Memory. That part of a com-
puter’s memory that is not lost when the
computer is turned off.

Output. Information that comes out of a
computer and is displayed on a screen (as

98

with Odyssey2) or on a tape, floppy disc,
print out, etc.

Programmable Read Only Memory (PROM).
The nonvolatile memory stored on an in-
tegrated circuit from which the computer
can read information. The computer can-
not store information on a PROM. The
PROM is programmable because the infor-
mation stored on it can be changed one or
more times depending on the type of PROM.
Read Only Memory (ROM). Permanent,
nonvolatile memory stored on an integrated
circuit (1C). The computer cannot store in-
formation on a ROM but can read the infor-
mation on it whenever necessary. The ROM
is not re-programmable and the informa-
tion on it cannot be modified or changed.

Random Access Memory (RAM). This is
the volatile memory of a computer which is
stored on integrated circuits. The compu-
ter can read the data stored on the chips—
and new data can be entered onto the chips.
This information disappears when the cur-
rent is turned off. Think of the ROM as the
computer’s dictionary and encyclopedia
and the RAM as the computer’s scratch pad.
One is printed and kept forever. The other
is used as a worksheet and thrown away.

Software. All of the instructions used by
the computer to perform its functions. This
includes languages, operating systems and
programs.

1.0c
LDV.B.0
63 00 09
6B 00
LDV.3.00
60 90
LDV.0.90
ADD.0

99

Instruction Sets

Hex
Code

Assembler
CodeInstruction Byte

Input
Input to Register 7R INP.R 1

04 INA 1Input to Accumulator
Output
Output from Register CR OUT.R 1

OTAOutput from Accumulator 0B 1
05 SIG 1One second Buzz

Change Accumulator Contents
Set to 0 01 CLR 1

02 DEC 1Subtract 1
03 INC 1Add 1
08 1Load with Random No. RND

MOVLoad from Program Step 09 1

Combine 2 digits 8R PAK.R 1

BR UNRR 1Separate 2 digits

LDA.R 1Load from Register 9R
DR SUB.R 1Subtract from Register

ER ADD.R 1Add Register

Change Register Contents
Store Accumulator STO.R 1AR

6RNN LDV.R.NN 2Load A Value

100

Function

To store a value from the keyboard (symbol or numeral) in a specified register.
To input data from the keyboard (symbol or numeral) into the Accumulator.
To display the contents of a specified register on the television screen. If you
have a series of output instructions, one right after another, you must place
a “No Operation” instruction after every third output instruction.
To display data stored in the Accumulator on the television screen.
To implement a one second buzz.

To clear Accumulator and set its contents to 0.
To decrement the contents of the Accumulator by one.
To increment the contents of the Accumulator by one.
To load Accumulator with a random number from 00 to 99.
To load Accumulator with the contents (two-digit value) contained in the
program step specified by Register C. When using the MOV instruction in a
program, Register C must remain empty. In other words, you should not
program any value in Register C.
To combine two digits from two specified registers in the Accumulator. This
instruction is used when working with numbers. Since the microprocessor
reads the numbers in Binary, we must instruct it to combine two digits in order
to produce and display a base 10number.The first register must always contain
a number less than ten.
To separate two digits in the Accumulator and store them in two specified
Registers.
To load the Accumulator with the contents of a specified register.
To subtract the contents of the Accumulator from a specified register and
store the results in the Accumulator.
To add the contents of a specified Register (R) to the contents of the Accumu-
lator and to store the result in the Accumulator. If the result is larger than two
digits, only the lowest two digits will be kept.
To store contents of the Accumulator in a specified register.
To load a value (NN) into a specified register (R). Registers may be 0 through
9 or A through F.

101

Hex
Code

Assembler
CodeInstruction Byte

Control Execution Order
No Operation 00 NOP 1

Halt FF HLT 1

Go to Subroutine 14NN GTS.NN 2

Return from Subroutine 07 RET 1

Branching Decision
Branch on Decimal Borrow 10NN BDB.NN 2

Branch on Decimal Carry 11NN BDC.NN 2

Branch Unconditionally 12NN GTO.NN 2

Branch if Accum. is 0 13NN BRZ.NN 2

Branch if Reg. not = Accum. 2RNN BVNE.R.NN2

Branch if Reg. = Accum. 3RNN BEQ.R.NN 2

Branch if Reg. is greater than 4RNN
Accum. BGT.R.NN 2

Branch if Reg. is less than
Accum.

5RNN BLS.R.NN 2

102

Function

To implement a delay inexecution of the program.Canbe used when writing
a program to utilize several program steps, so that when checking the pro-
gram, if an extra instruction step is needed, several will be vacant.
To halt execution of program in order to enter a different operational mode
to check registers. Used for trouble-shooting. The halt instruction is entered
after your program is entered. In other words, you would enter your complete
program, then, using the Roll Mode, you would enter a halt instruction (FF)
in place of an instruction already programmed. After entering the Display mode
and checking the registers for errors, you would return to the program step
containing FF, clear it, and re-enter the program step you had removed. (See
Continue Mode description in the Operating Mode Review.)
To instruct microprocessor to branch to a specified program step (NN) which
contains an operation which you may wish to use several times in one program.
This instruction set allows you to use the same operation several times with-
out having to rewrite it. The next sequential step number is saved for returning
from the subroutine. (See sample program “Area Problems Using Subroutine
and Return’.’) You must have a “Return from Subroutine” when you have a
“Go to Subroutine!’
To instruct the microprocessor to return to a specified program step. This
would be the step immediately following the instruction set “Go to Subroutine”
(See sample program “Addition Flash Cards’.’) Your must have a “Go to Sub-
routine” in order to have a “Return from Subroutine”

To instruct the microprocessor to branch to the specified program step (NN)
if the high order bits of the Accumulator equal a (9).*
To instruct the microprocessor to branch to the specified program step (NN)
if the high order bits of the Accumulator do not equal a (0).*
To instruct the microprocessor to branch to a specified program step (NN).
(See sample program “Message”)
To instruct the microprocessor to move to another program step if conditions
are satisfied. Most often used in arithmetic problems. (See 1Digit Division.)
To instruct microprocessor tobranch toa specified program step (NN) if Accum.
is not equal to a.specified register (R). (See sample program “Message”)
To instruct microprocessor to branch to a specified program step (NN) if the
contents of the Accum. are equal to the contents of the specified register (R).
(See sample programs “One Digit Multiplication” and “Six Letter Guess”)
To instruct the microprocessor branch to a specified program step (NN) if
the specified register (R) is greater than the Accum.
To instruct the microprocessor to branch to a specified program step (NN)
if the specified register (R) is less than the Accum. (See sample program
“One Digit Division”)
*The Accumulator contains eight bits of data. The first four are the high order
bits and the last four are the low order bits. 103

Program Sheets

104

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Date PageProgram Name

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DateProgram Name Page

Step Hex Assembler Byte Remarks
Code Code

Register Use

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

this gatefold
will provide you

with an electronic
road map— please

keep it open as
you work with

your Odyssey2

computer

Keyboard

Computer Symbols

0123456
00 01 02 03 04 05 06

789 : $?
07 08 09 0A 08 0C 0D

LP+WERT
0E 0F 10 11 12 13 14

U IO QSDF
15 16 17 18 19 1A 1B

GHJKAZX
1C 1D 1E 1F 20 21 22

CVBM . -
23 24 25 26 27 28

YN/
29

2B2A 2C 2D 2E 2F 30

-
31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E

External Flow

Reset

C D E P

Display Mode
(Step ##FF must be
Inserted inprogram)

Continue Mode Execution Mode

0-9 Display Register

A-F Display Register

P Display Program
Counter

S Display Subroutine
Counter

X Display Accumulator

Legend

Reset Clear

Program Mode

MA
Assembler Machine

Assembler Mode Hex Input Mode

R Rl l
Roll RollInput Input

Roll Mode

UD
UpDown

Input Mode

Assembler Language Machine Language

Enter

IB3389-1 AJ9406

THE ULTIMATECO MPUTER VIDEO GAME SVSTEM ...BY MAGNAVOX

COMPUTER INTRO!
It’s not for everyone—but if you’re ters “think .” You will learn how
up to a rewarding mental chal- to enter a program—the first step
lenge. here is a fascinating entry in learning how to actually write
point into a complex and highly one. Electronic road mapsgraph-
technical subject. This cartridge ically show you where each byte
turns your Odyssey2 into a very of data goes—and what happens
special kind of computer. It won't to it. Then, you will actually run
balance your checkbook or plot the program and see the exciting
thecourseof a spaceship to Mars results on your TV. Shut off the—but it will give you some idea power and the old program is
of how those computers do their automatically erased so you can
work . You will learn how compu- enter a new one immediately !

1979 Magnavox Consumer Electronics Company Odyssey is a trademark of the Magnavox Company

Notes about the PDF transfer:

The Computer Intro! manual was bound with double wire
rings to make it easy to flip open. The original page size
is 5" wide x 6.5" tall. The paper is glossy.

The original manual has three gatefold pages. One just
inside the front and back covers and one at the start of
the glossary. They are folded such that they are 4 3/4"
wide. This shortening makes it easy to flip to the glossa-
ry.

This PDF version is modified to eliminate the gatefolds to
make it more printer and display friendly. The original
gatefolds are included hereafter for archival purposes.
You will need a ledger size printer to print them out at
their original size.

Key Codes2Contents
Decimal
Equivalents

Key Hex
Code

Decimal
Equivalents

Key Hex
CodeCodeCode

this gatefold
will provide you

with an electronic
road map— please

keep it open as
you work with

your Odyssey2

computer

17 230 00 O00
In The Beginning
The World of the Computer
Creepy Crawler
Creepy Crawler Version II
The Roll Mode—Your Program
Trouble Shooter
Addition-Program A
Addition-Program B
Addition-Program C
One Digit Multiplication
One Digit Division
Area Problems Using
“Go to Subroutine” and “Return”
One Digit Addition Flash Card
Three Ways to Enter and
Output a Letter
Six Letter Guess
Message
Operating Mode Review
Glossary of Frequently Used
Computer Terms
Instruction Sets
Program Sheets

2. 0F1 01 P 1501
11. 18 2402 Q2 02
20. 13 1903 R3 03
28. 19 2504 S4 04
29. 14 2005 T5 05

2106 U 156 06
30. 07 24 36V7 07
35. 08 W 11 178 08
40. 22 3409 X9 09
46 32 2C 44A Y20
52. 21 32B 37 Z25
62. 12C 35 Blank 0C23

10D 261A 0A
71. $E 18 1112 0B
74. 27 46F Clear1B 2E

13G 1C 28 ? 0D
39H 291D 27

80. 16I 2216 10+
87. J 30 401E 28
92. K 31 411F X 29

L 14 420E 2A
100. 43M 3826 2B
104. N 472D 45 Enter 2F

Internal Flow Keyboard

Control Unit

Accumulator

Program Counter

Subroutine Return
Address Register

TV Screen

How a Computer Adds1 +1any valid Hex Input Mode command (i.e.,
[I] or [R]).
Input Mode

To enter the Input Mode, press (I) if you
are in either Assembler or Hex Input Mode.

Once you are in the Input Mode, you may
enter any assembler language instruction
if you have entered from the Assembler
Mode, or you may enter any HEX language
instruction (Op Code) if you have entered
from the Hex Input Mode. The Input Mode
is the mode in which you will enter your
program.

To leave the Input Mode, you may press
“Reset” to enter the Command Mode, or
press “Clear” to enter the Assembler or
Hex Input Mode.
Roll Mode

To enter the Roll Mode, press (R) if you
are in either Assembler or Hex Input Mode.

Once you are in the Roll Mode, you may
press (U) todisplay the program stepsfrom
00 to 99, or you may press (D) to display
the program steps from 99 to 00. This mode
is often used to check a program step to be
sure it contains the correct data.

To leave the Roll Mode, press “Clear” to
enter the Assembler or Hex Input Mode.

1 + 1 = ?

1 01 AndOrKeyboard 1

0

And Not

Symbol/Sound Generator
converts Binary 10into

decimal equivalent 2
10

1 + 1 = 2

91

Glossary of Frequently Used
Computer Terms

Glossary

Accumulator. A working register within a
computer. It is a small memory device that
provides temporary data storage and/or
instruction storage for the ALU. It can also
store the result of the ALU’s operation and
may be used as an operand source for the
ALU.

Applications. A job given to the computer
to do.

Application Software. Programs written for
the computer.
Arithmetic Logic Unit (ALU). A part of the
Central Processing Unit (CPU). The ALU
accepts data from different sources, acts
upon it, then outputs one result. It is in the
ALU that all arithmetic and logic operations
are performed. It is also known as the“num-
ber cruncher” since it’s here that all binary
data is acted upon.

Binary Numbers. A number based on two
digits. 1 and 0. With enough 1’s and 0’s, any
number can be expressed. The inside of a
computer is basically a series of on-off
switches that turn on an electrical charge
to express 1. They turn off the electrical
charge to express 0. A computer performs
binary calculations by sending these on-off
signals through logic gates which pass on

92

External FlowKeyboard

C D E P

Program Mode
Display Mode

(Step ##FF must be
inserted inprogram)

MAContinue Mode Execution Mode
Assembler Machine

Assembler Mode Hex Input Mode
0-9 Display Register R RI I

RollInput Roll Input

A-F Display Register

Roll Mode

UDP Display Program
Counter UpDown

S Display Subroutine
Counter Input Mode

Assembler Language Machine Language
X Display Accumulator

EnterLegend

Reset Clear

Computer Symbols
2

this gatefold
will provide you

with an electronic
road map— please

keep it open as
you work with

your Odyssey2

computer

0 123456
00 01 02 03 04 05 06

789 : $?
07 08 09 0A 08 0C 0D

LP +WERT
0E 0F 10 11 12 13 14

UIOQSDF
15 16 17 18 19 1A 1B

GHJKAZX
1C 1D 1E 1F 20 21 22

CVBM . -
23 24 25 26 27 28

YN/
29

2B2A 2C 2D 2F 302E

31 32 33 34 35 36 37

3D 3E38 39 3A 3B 3C

	Computer Intro! 1-00a
	Computer Intro! 1-00b
	Computer Intro! 1-02b
	Computer Intro! 1-02d
	Computer Intro! 1-02f
	Computer Intro! 1-03b
	Computer Intro! 1-03d
	Computer Intro! 1-03f
	Computer Intro! 1-03z
	Computer Intro! 1-04a
	Computer Intro! 1-04b
	Computer Intro! 1-05a
	Computer Intro! 1-05b
	Computer Intro! 1-06a
	Computer Intro! 1-06b
	Computer Intro! 1-07a
	Computer Intro! 1-07b
	Computer Intro! 1-08a
	Computer Intro! 1-08b
	Computer Intro! 1-09a
	Computer Intro! 1-09b
	Computer Intro! 1-10a
	Computer Intro! 1-10b
	Computer Intro! 1-11a
	Computer Intro! 1-11b
	Computer Intro! 2-01a
	Computer Intro! 2-01b
	Computer Intro! 2-02a
	Computer Intro! 2-02b
	Computer Intro! 2-03a
	Computer Intro! 2-03b
	Computer Intro! 2-04a
	Computer Intro! 2-04b
	Computer Intro! 2-05a
	Computer Intro! 2-05b
	Computer Intro! 2-06a
	Computer Intro! 2-06b
	Computer Intro! 2-07a
	Computer Intro! 2-07b
	Computer Intro! 2-08a
	Computer Intro! 2-08b
	Computer Intro! 2-09a
	Computer Intro! 2-09b
	Computer Intro! 2-10a
	Computer Intro! 2-10b
	Computer Intro! 2-11a
	Computer Intro! 2-11b
	Computer Intro! 2-12a
	Computer Intro! 2-12b
	Computer Intro! 2-13a
	Computer Intro! 2-13b
	Computer Intro! 2-14a
	Computer Intro! 2-14b
	Computer Intro! 2-15a
	Computer Intro! 2-15b
	Computer Intro! 2-16a
	Computer Intro! 2-16b
	Computer Intro! 2-17a
	Computer Intro! 2-17b
	Computer Intro! 2-18a
	Computer Intro! 2-18b
	Computer Intro! 2-19a
	Computer Intro! 2-19b
	Computer Intro! 2-20a
	Computer Intro! 2-20b
	Computer Intro! 2-21a
	Computer Intro! 2-21b
	Computer Intro! 2-22a
	Computer Intro! 2-22b
	Computer Intro! 3-01a
	Computer Intro! 3-01b
	Computer Intro! 3-02a
	Computer Intro! 3-02b
	Computer Intro! 3-03a
	Computer Intro! 3-03b
	Computer Intro! 3-04a
	Computer Intro! 3-04b
	Computer Intro! 3-05a
	Computer Intro! 3-05b
	Computer Intro! 3-06a
	Computer Intro! 3-06b
	Computer Intro! 3-07a
	Computer Intro! 3-07b
	Computer Intro! 3-08a
	Computer Intro! 3-08b
	Computer Intro! 3-09a
	Computer Intro! 3-09b
	Computer Intro! 3-10a
	Computer Intro! 3-10b
	Computer Intro! 3-11a
	Computer Intro! 3-11b
	Computer Intro! 3-12a
	Computer Intro! 3-12b
	Computer Intro! 3-13a
	Computer Intro! 3-13b
	Computer Intro! 3-14a
	Computer Intro! 3-14b
	Computer Intro! 4-01a
	Computer Intro! 4-01b
	Computer Intro! 4-02a
	Computer Intro! 4-02b
	Computer Intro! 4-04a
	Computer Intro! 4-04b
	Computer Intro! 4-05a
	Computer Intro! 4-05b
	Computer Intro! 4-06a
	Computer Intro! 4-06b
	Computer Intro! 4-07a
	Computer Intro! 4-07b
	Computer Intro! 4-08a
	Computer Intro! 4-08b
	Computer Intro! 4-09a
	Computer Intro! 4-09b
	Computer Intro! 4-10a
	Computer Intro! 4-10b
	Computer Intro! 4-11a
	Computer Intro! 4-11b
	Computer Intro! 4-12a
	Computer Intro! 4-12b
	Computer Intro! 4-13a
	Computer Intro! 4-13b
	Computer Intro! 4-14a
	Computer Intro! 4-14b
	Computer Intro! 4-15a
	Computer Intro! 4-15b
	Computer Intro! 4-16a
	Computer Intro! 4-16b
	Computer Intro! 4-17a
	Computer Intro! 4-17b
	Computer Intro! 4-18a
	Computer Intro! 4-18b
	Computer Intro! 4-19a
	Computer Intro! 4-19b
	Computer Intro! 4-20a
	Computer Intro! 4-20b
	Computer Intro! 4-21a
	Computer Intro! 5-01b
	Computer Intro! 5-02a
	Computer Intro! 5-02b
	Computer Intro! 5-03a
	Computer Intro! 5-03b
	Computer Intro! 5-05a
	Computer Intro! 5-05b
	Computer Intro! 5-06a
	Computer Intro! Gatefold 0a
	Computer Intro! Gatefold 0b
	Computer Intro! Gatefold 1a
	Computer Intro! Gatefold 1b
	Computer Intro! Gatefold 2a
	Computer Intro! Gatefold 2b
	Computer Intro! Gatefold 3a
	Computer Intro! Gatefold 3b

